Documentation Verification Report

Subadditive

📁 Source: Mathlib/Analysis/Subadditive.lean

Statistics

MetricCount
DefinitionsSubadditive, lim
2
Theoremsapply_mul_add_le, eventually_div_lt_of_div_lt, lim_le_div, tendsto_lim
4
Total6

Subadditive

Definitions

NameCategoryTheorems
lim 📖CompOp
2 mathmath: tendsto_lim, lim_le_div

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mul_add_le 📖mathematicalSubadditiveReal
Real.instLE
Real.instAdd
Real.instMul
Real.instNatCast
MulZeroClass.zero_mul
zero_add
Nat.cast_zero
le_refl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
le_imp_le_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_add
Nat.cast_one
eventually_div_lt_of_div_lt 📖mathematicalSubadditive
Real
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Filter.Eventually
Filter.atTop
Nat.instPreorder
Filter.Eventually.atTop_of_arithmetic
Filter.Tendsto.div
IsTopologicalDivisionRing.toContinuousInv₀
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
tendsto_const_nhds
Filter.Tendsto.div_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
Filter.tendsto_id
add_zero
IsStrictOrderedRing.toCharZero
Filter.Tendsto.congr'
Filter.Eventually.mono
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
add_div'
mul_comm
div_div_div_cancel_right₀
Filter.Tendsto.eventually
Filter.Tendsto.comp
tendsto_natCast_atTop_atTop
Real.instArchimedean
gt_mem_nhds
lt_of_le_of_lt
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
apply_mul_add_le
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
lim_le_div 📖mathematicalSubadditive
BddBelow
Real
Real.instLE
Set.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
limlim.eq_1
csInf_le
BddBelow.mono
Set.image_subset_range
Ne.bot_lt
tendsto_lim 📖mathematicalSubadditive
BddBelow
Real
Real.instLE
Set.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
lim
tendsto_order
instOrderTopologyReal
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LT.lt.trans_le
lim_le_div
LT.lt.ne'
zero_lt_one
Nat.instZeroLEOneClass
exists_lt_of_csInf_lt
lim.eq_1
Set.mem_image
eventually_div_lt_of_div_lt

(root)

Definitions

NameCategoryTheorems
Subadditive 📖MathDef

---

← Back to Index