Documentation

Mathlib.Analysis.Subadditive

Convergence of subadditive sequences #

A subadditive sequence u : โ„• โ†’ โ„ is a sequence satisfying u (m + n) โ‰ค u m + u n for all m, n. We define this notion as Subadditive u, and prove in Subadditive.tendsto_lim that, if u n / n is bounded below, then it converges to a limit (that we denote by Subadditive.lim for convenience). This result is known as Fekete's lemma in the literature.

TODO #

Define a bundled SubadditiveHom, use it.

def Subadditive (u : โ„• โ†’ โ„) :

A real-valued sequence is subadditive if it satisfies the inequality u (m + n) โ‰ค u m + u n for all m, n.

Equations
    Instances For
      @[irreducible]
      def Subadditive.lim {u : โ„• โ†’ โ„} (_h : Subadditive u) :

      The limit of a bounded-below subadditive sequence. The fact that the sequence indeed tends to this limit is given in Subadditive.tendsto_lim

      Equations
        Instances For
          theorem Subadditive.lim_le_div {u : โ„• โ†’ โ„} (h : Subadditive u) (hbdd : BddBelow (Set.range fun (n : โ„•) => u n / โ†‘n)) {n : โ„•} (hn : n โ‰  0) :
          h.lim โ‰ค u n / โ†‘n
          theorem Subadditive.apply_mul_add_le {u : โ„• โ†’ โ„} (h : Subadditive u) (k n r : โ„•) :
          u (k * n + r) โ‰ค โ†‘k * u n + u r
          theorem Subadditive.eventually_div_lt_of_div_lt {u : โ„• โ†’ โ„} (h : Subadditive u) {L : โ„} {n : โ„•} (hn : n โ‰  0) (hL : u n / โ†‘n < L) :
          โˆ€แถ  (p : โ„•) in Filter.atTop, u p / โ†‘p < L
          theorem Subadditive.tendsto_lim {u : โ„• โ†’ โ„} (h : Subadditive u) (hbdd : BddBelow (Set.range fun (n : โ„•) => u n / โ†‘n)) :
          Filter.Tendsto (fun (n : โ„•) => u n / โ†‘n) Filter.atTop (nhds h.lim)

          Fekete's lemma: a subadditive sequence which is bounded below converges.