📁 Source: Mathlib/CategoryTheory/Abelian/GrothendieckAxioms/Sheaf.lean
ab5ofSize
hasExactColimitsOfShape
hasFilteredColimitsOfSize
instHasExactColimitsOfShapeOfHasFiniteLimitsOfPreservesColimitsOfShapeFunctorOppositeSheafToPresheaf
instHasExactLimitsOfShapeOfHasFiniteColimitsOfPreservesFiniteColimitsFunctorOppositeSheafToPresheaf
instIsGrothendieckAbelian
isGrothendieckAbelian_of_essentiallySmall
CategoryTheory.AB5OfSize
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
CategoryTheory.AB5OfSize.ofShape
CategoryTheory.HasExactColimitsOfShape
instHasColimitsOfShape
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Adjunction.hasExactColimitsOfShape
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf
CategoryTheory.Limits.functorCategoryHasColimitsOfShape
CategoryTheory.instHasExactColimitsOfShapeFunctorOfHasFiniteLimits
instHasFiniteLimits
CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf
CategoryTheory.Limits.HasFilteredColimitsOfSize
CategoryTheory.HasExactColimitsOfShape.domain_of_functor
instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits
CategoryTheory.Limits.reflectsFiniteLimits_of_reflectsIsomorphisms
CategoryTheory.instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf
CategoryTheory.HasExactLimitsOfShape
instHasLimitsOfShape
CategoryTheory.HasExactLimitsOfShape.domain_of_functor
CategoryTheory.Limits.functorCategoryHasLimitsOfShape
CategoryTheory.instHasExactLimitsOfShapeFunctorOfHasFiniteColimits
CategoryTheory.Limits.reflectsFiniteColimitsOfReflectsIsomorphisms
instHasFiniteColimits
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.IsGrothendieckAbelian
CategoryTheory.sheafIsAbelian
CategoryTheory.locallySmall_of_univLE
UnivLE.self
CategoryTheory.IsGrothendieckAbelian.hasFilteredColimitsOfSize
CategoryTheory.Limits.hasFiniteLimits_of_hasCountableLimits
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
CategoryTheory.IsGrothendieckAbelian.hasLimits
CategoryTheory.IsGrothendieckAbelian.ab5OfSize
hasSeparator
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasColimits
CategoryTheory.IsGrothendieckAbelian.hasSeparator
CategoryTheory.hasSheafifyEssentiallySmallSite
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
CategoryTheory.IsGrothendieckAbelian.of_equivalence
CategoryTheory.Limits.hasLimitsOfShape_of_has_cofiltered_limits
CategoryTheory.Limits.hasCofilteredLimitsOfSize_of_hasLimitsOfSize
CategoryTheory.RepresentablyFlat.cofiltered
CategoryTheory.instRepresentablyFlatOppositeOpOfRepresentablyCoflat
CategoryTheory.RepresentablyCoflat.of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
---
← Back to Index