AB axioms in sheaf categories #
If J is a Grothendieck topology on a small category C : Type v,
and A : Type uā (with Category.{v} A) is a Grothendieck abelian category,
then Sheaf J A is a Grothendieck abelian category.
instance
CategoryTheory.Sheaf.instHasExactColimitsOfShapeOfHasFiniteLimitsOfPreservesColimitsOfShapeFunctorOppositeSheafToPresheaf
{C : Type u}
{A : Type uā}
{K : Type uā}
[Category.{v, u} C]
[Category.{vā, uā} A]
[Category.{vā, uā} K]
(J : GrothendieckTopology C)
[HasWeakSheafify J A]
[Limits.HasFiniteLimits A]
[Limits.HasColimitsOfShape K A]
[HasExactColimitsOfShape K A]
[Limits.PreservesColimitsOfShape K (sheafToPresheaf J A)]
:
HasExactColimitsOfShape K (Sheaf J A)
instance
CategoryTheory.Sheaf.instHasExactLimitsOfShapeOfHasFiniteColimitsOfPreservesFiniteColimitsFunctorOppositeSheafToPresheaf
{C : Type u}
{A : Type uā}
{K : Type uā}
[Category.{v, u} C]
[Category.{vā, uā} A]
[Category.{vā, uā} K]
(J : GrothendieckTopology C)
[HasWeakSheafify J A]
[Limits.HasFiniteColimits A]
[Limits.HasLimitsOfShape K A]
[HasExactLimitsOfShape K A]
[Limits.PreservesFiniteColimits (sheafToPresheaf J A)]
:
HasExactLimitsOfShape K (Sheaf J A)
instance
CategoryTheory.Sheaf.hasFilteredColimitsOfSize
{C : Type u}
{A : Type uā}
[Category.{v, u} C]
[Category.{vā, uā} A]
(J : GrothendieckTopology C)
[HasSheafify J A]
[Limits.HasFilteredColimitsOfSize.{vā, uā, vā, uā} A]
:
instance
CategoryTheory.Sheaf.hasExactColimitsOfShape
{C : Type u}
{A : Type uā}
{K : Type uā}
[Category.{v, u} C]
[Category.{vā, uā} A]
[Category.{vā, uā} K]
(J : GrothendieckTopology C)
[Limits.HasFiniteLimits A]
[HasSheafify J A]
[Limits.HasColimitsOfShape K A]
[HasExactColimitsOfShape K A]
:
HasExactColimitsOfShape K (Sheaf J A)
instance
CategoryTheory.Sheaf.ab5ofSize
{C : Type u}
{A : Type uā}
[Category.{v, u} C]
[Category.{vā, uā} A]
(J : GrothendieckTopology C)
[Limits.HasFiniteLimits A]
[HasSheafify J A]
[Limits.HasFilteredColimitsOfSize.{vā, uā, vā, uā} A]
[AB5OfSize.{vā, uā, vā, uā} A]
:
instance
CategoryTheory.Sheaf.instIsGrothendieckAbelian
{C : Type v}
[SmallCategory C]
(J : GrothendieckTopology C)
(A : Type uā)
[Category.{v, uā} A]
[Abelian A]
[IsGrothendieckAbelian.{v, v, uā} A]
[HasSheafify J A]
:
theorem
CategoryTheory.Sheaf.isGrothendieckAbelian_of_essentiallySmall
{C : Type uā}
[Category.{v, uā} C]
[EssentiallySmall.{v, v, uā} C]
(J : GrothendieckTopology C)
(A : Type uā)
[Category.{v, uā} A]
[Abelian A]
[IsGrothendieckAbelian.{v, v, uā} A]
[HasSheafify ((equivSmallModel C).inverse.inducedTopology J) A]
: