Documentation Verification Report

Continuous

📁 Source: Mathlib/CategoryTheory/Action/Continuous.lean

Statistics

MetricCount
DefinitionsIsContinuous, instHasForget₂HomSubtypeVTopCatContinuousMapCarrier, instMulActionCarrierObjTopCatForget₂ContinuousMap, mapContAction, mapContAction, mapContActionComp, mapContActionCongr, ContAction, IsDiscrete, instCoeAction, instHasForget₂HomSubtypeObjActionIsContinuousV, instHasForget₂HomSubtypeObjActionIsContinuousVTopCatContinuousMapCarrier, res, resComp, resCongr, resEquiv, DiscreteContAction, instCategory, instConcreteCategoryHomSubtypeObjActionIsContinuousContActionIsDiscreteV, instHasForget₂HomSubtypeObjActionIsContinuousContActionIsDiscreteV, instHasForget₂HomSubtypeObjActionIsContinuousContActionIsDiscreteVTopCatContinuousMapCarrier
21
TheoremsisContinuous_def, mapContAction_functor, mapContAction_inverse, mapContActionComp_hom, mapContActionComp_inv, mapContActionCongr_hom, mapContActionCongr_inv, mapContAction_map, mapContAction_obj_obj, resComp_hom, resComp_inv, resCongr_hom, resCongr_inv, resEquiv_functor, resEquiv_inverse, res_map, res_obj_obj, instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap
18
Total39

Action

Definitions

NameCategoryTheorems
IsContinuous 📖MathDef
17 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, ContAction.resEquiv_inverse, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.PreGaloisCategory.functorToContAction_map, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, ContAction.resCongr_hom, ContAction.res_obj_obj, ContAction.resComp_hom, ContAction.resEquiv_functor, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, ContAction.resCongr_inv, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, isContinuous_def, ContAction.resComp_inv, ContAction.res_map
instHasForget₂HomSubtypeVTopCatContinuousMapCarrier 📖CompOp
1 mathmath: isContinuous_def
instMulActionCarrierObjTopCatForget₂ContinuousMap 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
isContinuous_def 📖mathematical—IsContinuous
Continuous
TopCat.carrier
CategoryTheory.Functor.obj
Action
instCategory
TopCat
TopCat.instCategory
CategoryTheory.forget₂
HomSubtype
V
instFunLikeHomSubtypeV
instConcreteCategoryHomSubtypeV
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
instHasForget₂HomSubtypeVTopCatContinuousMapCarrier
instTopologicalSpaceProd
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
ρ
—ContinuousSMul.continuous_smul

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
mapContAction 📖CompOp
2 mathmath: mapContAction_functor, mapContAction_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
mapContAction_functor 📖mathematicalAction.IsContinuous
CategoryTheory.Functor.obj
Action
Action.instCategory
CategoryTheory.Functor.mapAction
functor
CategoryTheory.ObjectProperty.FullSubcategory.obj
inverse
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
mapContAction
CategoryTheory.Functor.mapContAction
——
mapContAction_inverse 📖mathematicalAction.IsContinuous
CategoryTheory.Functor.obj
Action
Action.instCategory
CategoryTheory.Functor.mapAction
functor
CategoryTheory.ObjectProperty.FullSubcategory.obj
inverse
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
mapContAction
CategoryTheory.Functor.mapContAction
——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapContAction 📖CompOp
8 mathmath: mapContActionCongr_inv, mapContActionComp_inv, mapContActionCongr_hom, CategoryTheory.Equivalence.mapContAction_functor, mapContAction_map, CategoryTheory.Equivalence.mapContAction_inverse, mapContActionComp_hom, mapContAction_obj_obj
mapContActionComp 📖CompOp
2 mathmath: mapContActionComp_inv, mapContActionComp_hom
mapContActionCongr 📖CompOp
2 mathmath: mapContActionCongr_inv, mapContActionCongr_hom

Theorems

NameKindAssumesProvesValidatesDepends On
mapContActionComp_hom 📖mathematicalAction.IsContinuous
obj
Action
Action.instCategory
mapAction
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
category
mapContAction
comp
mapContActionComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.refl
——
mapContActionComp_inv 📖mathematicalAction.IsContinuous
obj
Action
Action.instCategory
mapAction
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
category
mapContAction
comp
mapContActionComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.refl
——
mapContActionCongr_hom 📖mathematicalAction.IsContinuous
obj
Action
Action.instCategory
mapAction
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
category
mapContAction
mapContActionCongr
CategoryTheory.ObjectProperty.homMk
Action.mkIso
CategoryTheory.Iso.app
Action.V
CategoryTheory.ObjectProperty.isoMk
——
mapContActionCongr_inv 📖mathematicalAction.IsContinuous
obj
Action
Action.instCategory
mapAction
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
category
mapContAction
mapContActionCongr
CategoryTheory.ObjectProperty.homMk
Action.mkIso
CategoryTheory.Iso.app
Action.V
CategoryTheory.ObjectProperty.isoMk
——
mapContAction_map 📖mathematicalAction.IsContinuous
obj
Action
Action.instCategory
mapAction
CategoryTheory.ObjectProperty.FullSubcategory.obj
map
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
mapContAction
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
——
mapContAction_obj_obj 📖mathematicalAction.IsContinuous
obj
Action
Action.instCategory
mapAction
CategoryTheory.ObjectProperty.FullSubcategory.obj
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
mapContAction
——

ContAction

Definitions

NameCategoryTheorems
IsDiscrete 📖MathDef
1 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap
instCoeAction 📖CompOp—
instHasForget₂HomSubtypeObjActionIsContinuousV 📖CompOp—
instHasForget₂HomSubtypeObjActionIsContinuousVTopCatContinuousMapCarrier 📖CompOp—
res 📖CompOp
8 mathmath: resEquiv_inverse, resCongr_hom, res_obj_obj, resComp_hom, resEquiv_functor, resCongr_inv, resComp_inv, res_map
resComp 📖CompOp
2 mathmath: resComp_hom, resComp_inv
resCongr 📖CompOp
2 mathmath: resCongr_hom, resCongr_inv
resEquiv 📖CompOp
2 mathmath: resEquiv_inverse, resEquiv_functor

Theorems

NameKindAssumesProvesValidatesDepends On
resComp_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
CategoryTheory.Functor.category
res
ContinuousMonoidHom.comp
CategoryTheory.Functor.comp
resComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
——
resComp_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
CategoryTheory.Functor.category
res
ContinuousMonoidHom.comp
CategoryTheory.Functor.comp
resComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
——
resCongr_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
CategoryTheory.Functor.category
res
resCongr
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.obj
Action.res
MonoidHomClass.toMonoidHom
ContinuousMonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
ContinuousMonoidHom.instFunLike
ContinuousMonoidHom.instMonoidHomClass
CategoryTheory.ObjectProperty.FullSubcategory.obj
Action.mkIso
CategoryTheory.Iso.refl
Action.V
CategoryTheory.ObjectProperty.isoMk
——
resCongr_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
CategoryTheory.Functor.category
res
resCongr
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.obj
Action.res
MonoidHomClass.toMonoidHom
ContinuousMonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
ContinuousMonoidHom.instFunLike
ContinuousMonoidHom.instMonoidHomClass
CategoryTheory.ObjectProperty.FullSubcategory.obj
Action.mkIso
CategoryTheory.Iso.refl
Action.V
CategoryTheory.ObjectProperty.isoMk
——
resEquiv_functor 📖mathematical—CategoryTheory.Equivalence.functor
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
resEquiv
res
ContinuousMonoidHom.toContinuousMonoidHom
ContinuousMulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
ContinuousMulEquiv.instEquivLike
——
resEquiv_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
resEquiv
res
ContinuousMonoidHom.toContinuousMonoidHom
ContinuousMulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
ContinuousMulEquiv.instEquivLike
ContinuousMulEquiv.symm
——
res_map 📖mathematical—CategoryTheory.Functor.map
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
Action
Action.instCategory
Action.IsContinuous
res
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.obj
Action.res
MonoidHomClass.toMonoidHom
ContinuousMonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
ContinuousMonoidHom.instFunLike
ContinuousMonoidHom.instMonoidHomClass
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
—ContinuousMonoidHom.instMonoidHomClass
res_obj_obj 📖mathematical—CategoryTheory.ObjectProperty.FullSubcategory.obj
Action
Action.instCategory
Action.IsContinuous
CategoryTheory.Functor.obj
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
res
Action.res
MonoidHomClass.toMonoidHom
ContinuousMonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
ContinuousMonoidHom.instFunLike
ContinuousMonoidHom.instMonoidHomClass
——

DiscreteContAction

Definitions

NameCategoryTheorems
instCategory 📖CompOp
1 mathmath: instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap
instConcreteCategoryHomSubtypeObjActionIsContinuousContActionIsDiscreteV 📖CompOp
1 mathmath: instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap
instHasForget₂HomSubtypeObjActionIsContinuousContActionIsDiscreteV 📖CompOp—
instHasForget₂HomSubtypeObjActionIsContinuousContActionIsDiscreteVTopCatContinuousMapCarrier 📖CompOp
1 mathmath: instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap 📖mathematical—DiscreteTopology
TopCat.carrier
CategoryTheory.Functor.obj
DiscreteContAction
instCategory
TopCat
TopCat.instCategory
CategoryTheory.forget₂
Action.HomSubtype
CategoryTheory.ObjectProperty.FullSubcategory.obj
Action
Action.instCategory
Action.IsContinuous
ContAction
CategoryTheory.ObjectProperty.FullSubcategory.category
ContAction.IsDiscrete
Action.V
Action.instFunLikeHomSubtypeV
instConcreteCategoryHomSubtypeObjActionIsContinuousContActionIsDiscreteV
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
instHasForget₂HomSubtypeObjActionIsContinuousContActionIsDiscreteVTopCatContinuousMapCarrier
—CategoryTheory.ObjectProperty.FullSubcategory.property

(root)

Definitions

NameCategoryTheorems
ContAction 📖CompOp
24 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Functor.mapContActionCongr_inv, CategoryTheory.Functor.mapContActionComp_inv, CategoryTheory.Functor.mapContActionCongr_hom, ContAction.resEquiv_inverse, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.PreGaloisCategory.functorToContAction_map, CategoryTheory.Equivalence.mapContAction_functor, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Functor.mapContAction_map, ContAction.resCongr_hom, ContAction.res_obj_obj, ContAction.resComp_hom, ContAction.resEquiv_functor, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, ContAction.resCongr_inv, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.Equivalence.mapContAction_inverse, CategoryTheory.Functor.mapContActionComp_hom, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, CategoryTheory.Functor.mapContAction_obj_obj, ContAction.resComp_inv, ContAction.res_map
DiscreteContAction 📖CompOp
1 mathmath: DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap

---

← Back to Index