Documentation

Mathlib.CategoryTheory.Action.Continuous

Topological subcategories of Action V G #

For a concrete category V, where the forgetful functor factors via TopCat, and a monoid G, equipped with a topological space instance, we define the full subcategory ContAction V G of all objects of Action V G where the induced action is continuous.

We also define a category DiscreteContAction V G as the full subcategory of ContAction V G, where the underlying topological space is discrete.

Finally we define inclusion functors into Action V G and TopCat in terms of HasForget₂ instances.

instance Action.instMulActionCarrierObjTopCatForget₂ContinuousMap (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] (G : Type u_4) [Monoid G] (X : Action V G) :
Equations
    @[reducible, inline]
    abbrev Action.IsContinuous {V : Type u_1} [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] (X : Action V G) :

    For HasForget₂ V TopCat a predicate on an X : Action V G saying that the induced action on the underlying topological space is continuous.

    Equations
      Instances For
        theorem Action.isContinuous_def {V : Type u_1} [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] (X : Action V G) :
        @[reducible, inline]
        abbrev ContAction (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] (G : Type u_4) [Monoid G] [TopologicalSpace G] :
        Type (max (max u_1 u_4) v_1)

        For HasForget₂ V TopCat, this is the full subcategory of Action V G where the induced action is continuous.

        Equations
          Instances For
            instance ContAction.instCoeAction (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] (G : Type u_4) [Monoid G] [TopologicalSpace G] :
            Coe (ContAction V G) (Action V G)
            Equations
              @[reducible, inline]
              abbrev ContAction.IsDiscrete {V : Type u_1} [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] (X : ContAction V G) :

              A predicate on an X : ContAction V G saying that the topology on the underlying type of X is discrete.

              Equations
                Instances For
                  def ContAction.res (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f : G →ₜ* H) :

                  The "restriction" functor along a monoid homomorphism f : G →* H, taking actions of H to actions of G. This is the analogue of Action.res in the continuous setting.

                  Equations
                    Instances For
                      @[simp]
                      theorem ContAction.res_map (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f : G →ₜ* H) {X✝ Y✝ : ContAction V H} (f✝ : X✝ Y✝) :
                      @[simp]
                      theorem ContAction.res_obj_obj (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f : G →ₜ* H) (X : ContAction V H) :
                      ((res V f).obj X).obj = (Action.res V f).obj X.obj
                      def ContAction.resComp (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] {K : Type u_6} [Monoid K] [TopologicalSpace K] (f : G →ₜ* H) (h : H →ₜ* K) :
                      res V (h.comp f) (res V h).comp (res V f)

                      Restricting scalars along a composition is naturally isomorphic to restricting scalars twice.

                      Equations
                        Instances For
                          @[simp]
                          theorem ContAction.resComp_hom (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] {K : Type u_6} [Monoid K] [TopologicalSpace K] (f : G →ₜ* H) (h : H →ₜ* K) :
                          (resComp V f h).hom = { app := fun (X : ContAction V K) => CategoryTheory.CategoryStruct.id ((res V (h.comp f)).obj X), naturality := }
                          @[simp]
                          theorem ContAction.resComp_inv (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] {K : Type u_6} [Monoid K] [TopologicalSpace K] (f : G →ₜ* H) (h : H →ₜ* K) :
                          (resComp V f h).inv = { app := fun (X : ContAction V K) => CategoryTheory.CategoryStruct.id ((res V (h.comp f)).obj X), naturality := }
                          def ContAction.resCongr (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f f' : G →ₜ* H) (h : f = f') :
                          res V f res V f'

                          If f = f', restriction of scalars along f and f' is the same.

                          Equations
                            Instances For
                              @[simp]
                              theorem ContAction.resCongr_hom (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f f' : G →ₜ* H) (h : f = f') :
                              (resCongr V f f' h).hom = { app := fun (X : ContAction V H) => CategoryTheory.ObjectProperty.homMk (Action.mkIso (CategoryTheory.Iso.refl X.obj.V) ).hom, naturality := }
                              @[simp]
                              theorem ContAction.resCongr_inv (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f f' : G →ₜ* H) (h : f = f') :
                              (resCongr V f f' h).inv = { app := fun (X : ContAction V H) => CategoryTheory.ObjectProperty.homMk (Action.mkIso (CategoryTheory.Iso.refl X.obj.V) ).inv, naturality := }
                              def ContAction.resEquiv (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f : G ≃ₜ* H) :

                              Restriction of scalars along a topological monoid isomorphism induces an equivalence of categories.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem ContAction.resEquiv_functor (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f : G ≃ₜ* H) :
                                  (resEquiv V f).functor = res V f
                                  @[simp]
                                  theorem ContAction.resEquiv_inverse (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] {G : Type u_4} [Monoid G] [TopologicalSpace G] {H : Type u_5} [Monoid H] [TopologicalSpace H] (f : G ≃ₜ* H) :
                                  (resEquiv V f).inverse = res V f.symm
                                  def DiscreteContAction (V : Type u_1) [CategoryTheory.Category.{v_1, u_1} V] {FV : VVType u_2} {CV : VType u_3} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [CategoryTheory.ConcreteCategory V FV] [CategoryTheory.HasForget₂ V TopCat] (G : Type u_4) [Monoid G] [TopologicalSpace G] :
                                  Type (max (max u_1 u_4) v_1)

                                  The subcategory of ContAction V G where the topology is discrete.

                                  Equations
                                    Instances For
                                      def CategoryTheory.Functor.mapContAction {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] (F : Functor V W) (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) :

                                      Continuous version of Functor.mapAction.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Functor.mapContAction_map {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] (F : Functor V W) (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) {X✝ Y✝ : ContAction V G} (f : X✝ Y✝) :
                                          @[simp]
                                          theorem CategoryTheory.Functor.mapContAction_obj_obj {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] (F : Functor V W) (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (X : ContAction V G) :
                                          ((mapContAction G F H).obj X).obj = (F.mapAction G).obj X.obj
                                          def CategoryTheory.Functor.mapContActionComp {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] {T : Type u_12} [Category.{v_4, u_12} T] {FT : TTType u_13} {CT : TType u_14} [(X Y : T) → FunLike (FT X Y) (CT X) (CT Y)] [ConcreteCategory T FT] [HasForget₂ T TopCat] (F : Functor V W) (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (F' : Functor W T) (H' : ∀ (X : ContAction W G), ((F'.mapAction G).obj X.obj).IsContinuous) :
                                          mapContAction G (F.comp F') (mapContAction G F H).comp (mapContAction G F' H')

                                          Continuous version of Functor.mapActionComp.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.Functor.mapContActionComp_inv {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] {T : Type u_12} [Category.{v_4, u_12} T] {FT : TTType u_13} {CT : TType u_14} [(X Y : T) → FunLike (FT X Y) (CT X) (CT Y)] [ConcreteCategory T FT] [HasForget₂ T TopCat] (F : Functor V W) (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (F' : Functor W T) (H' : ∀ (X : ContAction W G), ((F'.mapAction G).obj X.obj).IsContinuous) :
                                              (mapContActionComp G F H F' H').inv = { app := fun (X : ContAction V G) => CategoryStruct.id ((mapContAction G (F.comp F') ).obj X), naturality := }
                                              @[simp]
                                              theorem CategoryTheory.Functor.mapContActionComp_hom {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] {T : Type u_12} [Category.{v_4, u_12} T] {FT : TTType u_13} {CT : TType u_14} [(X Y : T) → FunLike (FT X Y) (CT X) (CT Y)] [ConcreteCategory T FT] [HasForget₂ T TopCat] (F : Functor V W) (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (F' : Functor W T) (H' : ∀ (X : ContAction W G), ((F'.mapAction G).obj X.obj).IsContinuous) :
                                              (mapContActionComp G F H F' H').hom = { app := fun (X : ContAction V G) => CategoryStruct.id ((mapContAction G (F.comp F') ).obj X), naturality := }
                                              def CategoryTheory.Functor.mapContActionCongr {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] {F F' : Functor V W} (e : F F') (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (H' : ∀ (X : ContAction V G), ((F'.mapAction G).obj X.obj).IsContinuous) :

                                              Continuous version of Functor.mapActionCongr.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.mapContActionCongr_hom {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] {F F' : Functor V W} (e : F F') (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (H' : ∀ (X : ContAction V G), ((F'.mapAction G).obj X.obj).IsContinuous) :
                                                  (mapContActionCongr G e H H').hom = { app := fun (X : ContAction V G) => ObjectProperty.homMk (Action.mkIso (e.app X.obj.V) ).hom, naturality := }
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.mapContActionCongr_inv {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] {F F' : Functor V W} (e : F F') (H : ∀ (X : ContAction V G), ((F.mapAction G).obj X.obj).IsContinuous) (H' : ∀ (X : ContAction V G), ((F'.mapAction G).obj X.obj).IsContinuous) :
                                                  (mapContActionCongr G e H H').inv = { app := fun (X : ContAction V G) => ObjectProperty.homMk (Action.mkIso (e.app X.obj.V) ).inv, naturality := }
                                                  def CategoryTheory.Equivalence.mapContAction {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] (E : V W) (H₁ : ∀ (X : ContAction V G), ((E.functor.mapAction G).obj X.obj).IsContinuous) (H₂ : ∀ (X : ContAction W G), ((E.inverse.mapAction G).obj X.obj).IsContinuous) :

                                                  Continuous version of Equivalence.mapAction.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.Equivalence.mapContAction_inverse {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] (E : V W) (H₁ : ∀ (X : ContAction V G), ((E.functor.mapAction G).obj X.obj).IsContinuous) (H₂ : ∀ (X : ContAction W G), ((E.inverse.mapAction G).obj X.obj).IsContinuous) :
                                                      @[simp]
                                                      theorem CategoryTheory.Equivalence.mapContAction_functor {V : Type u_5} {W : Type u_6} [Category.{v_2, u_5} V] {FV : VVType u_7} {CV : VType u_8} [(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)] [ConcreteCategory V FV] [HasForget₂ V TopCat] [Category.{v_3, u_6} W] {FW : WWType u_9} {CW : WType u_10} [(X Y : W) → FunLike (FW X Y) (CW X) (CW Y)] [ConcreteCategory W FW] [HasForget₂ W TopCat] (G : Type u_11) [Monoid G] [TopologicalSpace G] (E : V W) (H₁ : ∀ (X : ContAction V G), ((E.functor.mapAction G).obj X.obj).IsContinuous) (H₂ : ∀ (X : ContAction W G), ((E.inverse.mapAction G).obj X.obj).IsContinuous) :