Documentation Verification Report

Opposites

📁 Source: Mathlib/CategoryTheory/Adjunction/Opposites.lean

Statistics

MetricCount
DefinitionsleftAdjointsCoyonedaEquiv, leftOp, natIsoOfLeftAdjointNatIso, natIsoOfRightAdjointNatIso, op, rightOp, unop
7
TheoremsleftOp_counit, leftOp_eq, leftOp_unit, op_counit, op_unit, rightOp_counit, rightOp_eq, rightOp_unit, unop_counit, unop_unit, leftOp, op, rightOp, leftOp, op, rightOp
16
Total23

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
leftAdjointsCoyonedaEquiv 📖CompOp
leftOp 📖CompOp
3 mathmath: leftOp_unit, leftOp_counit, leftOp_eq
natIsoOfLeftAdjointNatIso 📖CompOp
natIsoOfRightAdjointNatIso 📖CompOp
op 📖CompOp
10 mathmath: Triple.op_adj₁, Triple.op_adj₂, rightOp_eq, op_unit, CategoryTheory.Pretriangulated.Opposite.commShift_adjunction_op_int, leftOp_eq, Quadruple.op_adj₁, op_counit, Quadruple.op_adj₂, Quadruple.op_adj₃
rightOp 📖CompOp
3 mathmath: rightOp_counit, rightOp_eq, rightOp_unit
unop 📖CompOp
2 mathmath: unop_counit, unop_unit

Theorems

NameKindAssumesProvesValidatesDepends On
leftOp_counit 📖mathematicalcounit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
leftOp
CategoryTheory.NatTrans.op
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
leftOp_eq 📖mathematicalleftOp
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
CategoryTheory.opOpEquivalence
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.op
CategoryTheory.Functor.leftOp
CategoryTheory.Equivalence.toAdjunction
op
ext
CategoryTheory.NatTrans.ext'
comp_unit_app
CategoryTheory.Category.id_comp
leftOp_unit 📖mathematicalunit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
leftOp
CategoryTheory.NatTrans.unop
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
op_counit 📖mathematicalcounit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
op_unit 📖mathematicalunit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
rightOp_counit 📖mathematicalcounit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
rightOp
CategoryTheory.NatTrans.op
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
rightOp_eq 📖mathematicalrightOp
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
CategoryTheory.opOpEquivalence
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.op
CategoryTheory.Functor.rightOp
CategoryTheory.Equivalence.toAdjunction
op
ext
CategoryTheory.NatTrans.ext'
comp_unit_app
CategoryTheory.Category.id_comp
rightOp_unit 📖mathematicalunit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
rightOp
CategoryTheory.NatTrans.unop
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
unop_counit 📖mathematicalcounit
CategoryTheory.Functor.unop
unop
CategoryTheory.NatTrans.unop
CategoryTheory.Functor.id
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
unit
unop_unit 📖mathematicalunit
CategoryTheory.Functor.unop
unop
CategoryTheory.NatTrans.unop
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
counit

CategoryTheory.Functor.IsLeftAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
leftOp 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
op 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
rightOp 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
CategoryTheory.Functor.isRightAdjoint_comp
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
op

CategoryTheory.Functor.IsRightAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
leftOp 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.isLeftAdjoint_comp
op
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
op 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
rightOp 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp

---

← Back to Index