Opposite adjunctions #
This file contains constructions to relate adjunctions of functors to adjunctions of their opposites.
Tags #
adjunction, opposite, uniqueness
def
CategoryTheory.Adjunction.unop
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ Dįµįµ}
{G : Functor Dįµįµ Cįµįµ}
(h : G ⣠F)
:
If G is adjoint to F then F.unop is adjoint to G.unop.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.unop_counit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ Dįµįµ}
{G : Functor Dįµįµ Cįµįµ}
(h : G ⣠F)
:
@[simp]
theorem
CategoryTheory.Adjunction.unop_unit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ Dįµįµ}
{G : Functor Dįµįµ Cįµįµ}
(h : G ⣠F)
:
def
CategoryTheory.Adjunction.op
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C D}
{G : Functor D C}
(h : G ⣠F)
:
If G is adjoint to F then F.op is adjoint to G.op.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.op_unit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C D}
{G : Functor D C}
(h : G ⣠F)
:
@[simp]
theorem
CategoryTheory.Adjunction.op_counit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C D}
{G : Functor D C}
(h : G ⣠F)
:
def
CategoryTheory.Adjunction.leftOp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C Dįµįµ}
{G : Functor D Cįµįµ}
(a : F ⣠G.leftOp)
:
If F is adjoint to G.leftOp then G is adjoint to F.leftOp.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.leftOp_unit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C Dįµįµ}
{G : Functor D Cįµįµ}
(a : F ⣠G.leftOp)
:
@[simp]
theorem
CategoryTheory.Adjunction.leftOp_counit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C Dįµįµ}
{G : Functor D Cįµįµ}
(a : F ⣠G.leftOp)
:
def
CategoryTheory.Adjunction.rightOp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ D}
{G : Functor Dįµįµ C}
(a : F.rightOp ⣠G)
:
If F.rightOp is adjoint to G then G.rightOp is adjoint to F.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.rightOp_counit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ D}
{G : Functor Dįµįµ C}
(a : F.rightOp ⣠G)
:
@[simp]
theorem
CategoryTheory.Adjunction.rightOp_unit
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ D}
{G : Functor Dįµįµ C}
(a : F.rightOp ⣠G)
:
theorem
CategoryTheory.Adjunction.leftOp_eq
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C Dįµįµ}
{G : Functor D Cįµįµ}
(a : F ⣠G.leftOp)
:
theorem
CategoryTheory.Adjunction.rightOp_eq
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ D}
{G : Functor Dįµįµ C}
(a : F.rightOp ⣠G)
:
def
CategoryTheory.Adjunction.leftAdjointsCoyonedaEquiv
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F F' : Functor C D}
{G : Functor D C}
(adj1 : F ⣠G)
(adj2 : F' ⣠G)
:
If F and F' are both adjoint to G, there is a natural isomorphism
F.op ā coyoneda ā
F'.op ā coyoneda.
We use this in combination with fullyFaithfulCancelRight to show left adjoints are unique.
Equations
Instances For
@[deprecated "Use `(Adjunction.conjugateIsoEquiv adj1 adj2).symm` (requires `import Mathlib.CategoryTheory.Adjunction.Mates`)." (since := "2026-01-31")]
def
CategoryTheory.Adjunction.natIsoOfRightAdjointNatIso
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F F' : Functor C D}
{G G' : Functor D C}
(adj1 : F ⣠G)
(adj2 : F' ⣠G')
(r : G ā
G')
:
Deprecated: prefer (Adjunction.conjugateIsoEquiv adj1 adj2).symm.
Equations
Instances For
@[deprecated "Use `Adjunction.conjugateIsoEquiv adj1 adj2` (requires `import Mathlib.CategoryTheory.Adjunction.Mates`)." (since := "2026-01-31")]
def
CategoryTheory.Adjunction.natIsoOfLeftAdjointNatIso
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F F' : Functor C D}
{G G' : Functor D C}
(adj1 : F ⣠G)
(adj2 : F' ⣠G')
(l : F ā
F')
:
Deprecated: prefer Adjunction.conjugateIsoEquiv adj1 adj2.
Equations
Instances For
instance
CategoryTheory.Functor.IsLeftAdjoint.op
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C D}
[F.IsLeftAdjoint]
:
instance
CategoryTheory.Functor.IsRightAdjoint.op
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C D}
[F.IsRightAdjoint]
:
instance
CategoryTheory.Functor.IsLeftAdjoint.leftOp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C Dįµįµ}
[F.IsLeftAdjoint]
:
instance
CategoryTheory.Functor.IsRightAdjoint.leftOp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor C Dįµįµ}
[F.IsRightAdjoint]
:
instance
CategoryTheory.Functor.IsLeftAdjoint.rightOp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ D}
[F.IsLeftAdjoint]
:
instance
CategoryTheory.Functor.IsRightAdjoint.rightOp
{C : Type uā}
[Category.{vā, uā} C]
{D : Type uā}
[Category.{vā, uā} D]
{F : Functor Cįµįµ D}
[F.IsRightAdjoint]
: