Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Bicategory/Adjunction/Basic.lean

Statistics

MetricCount
Definitionscomp, compCounit, compUnit, counit, id, instInhabitedId, ofIsLeftAdjoint, ofIsRightAdjoint, unit, counit, hom, id, instInhabited, inv, mkOfAdjointifyCounit, unit, IsLeftAdjoint, IsRightAdjoint, LeftAdjoint, adj, left, RightAdjoint, adj, right, adjointifyCounit, getLeftAdjoint, getRightAdjoint, leftAdjoint, leftZigzag, leftZigzagIso, rightAdjoint, rightZigzag, rightZigzagIso, Β«term_β‰Œ_Β», Β«term_⊣_Β»
35
Theoremscomp_counit, comp_left_triangle_aux, comp_right_triangle_aux, comp_unit, ext, ext_iff, left_triangle, right_triangle, left_triangle, left_triangle_hom, right_triangle, right_triangle_hom, mk, nonempty, mk, nonempty, adjointifyCounit_left_triangle, instIsIsoHomLeftZigzagHom, instIsIsoHomRightZigzagHom, leftZigzagIso_hom, leftZigzagIso_inv, leftZigzagIso_symm, rightZigzagIso_hom, rightZigzagIso_inv, rightZigzagIso_symm, rightZigzag_idempotent_of_left_triangle, right_triangle_of_left_triangle
27
Total62

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
IsLeftAdjoint πŸ“–CompData
2 mathmath: isLeftAdjoint_TFAE, IsLeftAdjoint.mk
IsRightAdjoint πŸ“–CompData
2 mathmath: IsRightAdjoint.mk, isRightAdjoint_TFAE
LeftAdjoint πŸ“–CompData
1 mathmath: IsRightAdjoint.nonempty
RightAdjoint πŸ“–CompData
1 mathmath: IsLeftAdjoint.nonempty
adjointifyCounit πŸ“–CompOp
1 mathmath: adjointifyCounit_left_triangle
getLeftAdjoint πŸ“–CompOpβ€”
getRightAdjoint πŸ“–CompOpβ€”
leftAdjoint πŸ“–CompOpβ€”
leftZigzag πŸ“–CompOp
6 mathmath: leftZigzagIso_hom, instIsIsoHomLeftZigzagHom, Adjunction.left_triangle, rightZigzagIso_inv, Adjunction.comp_left_triangle_aux, Equivalence.left_triangle_hom
leftZigzagIso πŸ“–CompOp
6 mathmath: leftZigzagIso_symm, leftZigzagIso_hom, Equivalence.left_triangle, adjointifyCounit_left_triangle, rightZigzagIso_symm, leftZigzagIso_inv
rightAdjoint πŸ“–CompOpβ€”
rightZigzag πŸ“–CompOp
8 mathmath: right_triangle_of_left_triangle, rightZigzag_idempotent_of_left_triangle, instIsIsoHomRightZigzagHom, leftZigzagIso_inv, Adjunction.comp_right_triangle_aux, Adjunction.right_triangle, Equivalence.right_triangle_hom, rightZigzagIso_hom
rightZigzagIso πŸ“–CompOp
5 mathmath: leftZigzagIso_symm, Equivalence.right_triangle, rightZigzagIso_symm, rightZigzagIso_inv, rightZigzagIso_hom
Β«term_β‰Œ_Β» πŸ“–CompOpβ€”
Β«term_⊣_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjointifyCounit_left_triangle πŸ“–mathematicalβ€”leftZigzagIso
adjointifyCounit
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
CategoryTheory.Iso.symm
rightUnitor
β€”CategoryTheory.Iso.ext
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Bicategory.eval_bicategoricalComp
Mathlib.Tactic.Bicategory.eval_whiskerRight
Mathlib.Tactic.Bicategory.eval_of
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Bicategory.evalWhiskerRight_nil
Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of
Mathlib.Tactic.Bicategory.evalComp_cons
Mathlib.Tactic.Bicategory.evalComp_nil_nil
Mathlib.Tactic.Bicategory.evalComp_nil_cons
Mathlib.Tactic.Bicategory.eval_whiskerLeft
Mathlib.Tactic.Bicategory.eval_comp
Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil
Mathlib.Tactic.Bicategory.evalWhiskerRight_comp
Mathlib.Tactic.Bicategory.evalWhiskerRight_id
Mathlib.Tactic.Bicategory.evalWhiskerLeft_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Bicategory.mk_eq_of_naturality
Mathlib.Tactic.Bicategory.naturality_comp
Mathlib.Tactic.Bicategory.naturality_whiskerRight
Mathlib.Tactic.Bicategory.naturality_id
Mathlib.Tactic.Bicategory.naturality_leftUnitor
Mathlib.Tactic.Bicategory.naturality_inv
Mathlib.Tactic.Bicategory.naturality_rightUnitor
Mathlib.Tactic.Bicategory.naturality_associator
Mathlib.Tactic.Bicategory.naturality_whiskerLeft
whisker_exchange
Mathlib.Tactic.Bicategory.evalWhiskerLeft_id
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_whisker
CategoryTheory.Iso.inv_hom_id
instIsIsoHomLeftZigzagHom πŸ“–mathematicalβ€”CategoryTheory.IsIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftZigzag
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.isIso_hom
instIsIsoHomRightZigzagHom πŸ“–mathematicalβ€”CategoryTheory.IsIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightZigzag
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.isIso_hom
leftZigzagIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftZigzagIso
leftZigzag
β€”β€”
leftZigzagIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftZigzagIso
rightZigzag
β€”CategoryTheory.Iso.trans_assoc
whiskerRight_comp
id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
leftZigzagIso_symm πŸ“–mathematicalβ€”CategoryTheory.Iso.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftZigzagIso
rightZigzagIso
β€”CategoryTheory.Iso.ext
leftZigzagIso_inv
rightZigzagIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightZigzagIso
rightZigzag
β€”β€”
rightZigzagIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightZigzagIso
leftZigzag
β€”CategoryTheory.Iso.trans_assoc
whiskerRight_comp
id_whiskerRight
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
rightZigzagIso_symm πŸ“–mathematicalβ€”CategoryTheory.Iso.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightZigzagIso
leftZigzagIso
β€”CategoryTheory.Iso.ext
rightZigzagIso_inv
rightZigzag_idempotent_of_left_triangle πŸ“–mathematicalleftZigzag
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
leftUnitor
CategoryTheory.Iso.inv
rightUnitor
CategoryTheory.bicategoricalComp
CategoryTheory.BicategoricalCoherence.left
CategoryTheory.BicategoricalCoherence.right'
CategoryTheory.BicategoricalCoherence.refl
rightZigzag
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Bicategory.eval_bicategoricalComp
Mathlib.Tactic.Bicategory.eval_whiskerLeft
Mathlib.Tactic.Bicategory.eval_of
Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil
Mathlib.Tactic.Bicategory.eval_whiskerRight
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Bicategory.evalWhiskerRight_nil
Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of
Mathlib.Tactic.Bicategory.evalComp_cons
Mathlib.Tactic.Bicategory.evalComp_nil_nil
Mathlib.Tactic.Bicategory.evalComp_nil_cons
Mathlib.Tactic.Bicategory.eval_comp
Mathlib.Tactic.Bicategory.evalWhiskerRight_id
Mathlib.Tactic.Bicategory.evalWhiskerLeft_comp
Mathlib.Tactic.Bicategory.evalWhiskerLeft_id
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Bicategory.mk_eq_of_naturality
Mathlib.Tactic.Bicategory.naturality_whiskerLeft
Mathlib.Tactic.Bicategory.naturality_id
Mathlib.Tactic.Bicategory.naturality_comp
Mathlib.Tactic.Bicategory.naturality_whiskerRight
Mathlib.Tactic.Bicategory.naturality_inv
Mathlib.Tactic.Bicategory.naturality_associator
Mathlib.Tactic.Bicategory.naturality_rightUnitor
Mathlib.Tactic.Bicategory.naturality_leftUnitor
whisker_exchange
Mathlib.Tactic.Bicategory.evalWhiskerRight_comp
leftZigzag.eq_1
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_whisker
right_triangle_of_left_triangle πŸ“–mathematicalleftZigzag
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftUnitor
CategoryTheory.Iso.inv
rightUnitor
rightZigzagβ€”CategoryTheory.cancel_epi
CategoryTheory.epi_comp
CategoryTheory.IsIso.epi_of_iso
instIsIsoHomRightZigzagHom
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Bicategory.eval_comp
Mathlib.Tactic.Bicategory.eval_bicategoricalComp
Mathlib.Tactic.Bicategory.eval_whiskerLeft
Mathlib.Tactic.Bicategory.eval_of
Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil
Mathlib.Tactic.Bicategory.eval_whiskerRight
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Bicategory.evalWhiskerRight_nil
Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of
Mathlib.Tactic.Bicategory.evalComp_cons
Mathlib.Tactic.Bicategory.evalComp_nil_nil
Mathlib.Tactic.Bicategory.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Bicategory.mk_eq_of_naturality
Mathlib.Tactic.Bicategory.naturality_whiskerLeft
Mathlib.Tactic.Bicategory.naturality_id
Mathlib.Tactic.Bicategory.naturality_comp
Mathlib.Tactic.Bicategory.naturality_whiskerRight
Mathlib.Tactic.Bicategory.naturality_inv
Mathlib.Tactic.Bicategory.naturality_associator
Mathlib.Tactic.Bicategory.naturality_leftUnitor
Mathlib.Tactic.Bicategory.naturality_rightUnitor
rightZigzag_idempotent_of_left_triangle
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id

CategoryTheory.Bicategory.Adjunction

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
16 mathmath: CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv, CategoryTheory.Bicategory.conjugateEquiv_whiskerRight, CategoryTheory.Bicategory.mateEquiv_comp_id_right, CategoryTheory.Adjunction.toCat_comp_toCat, CategoryTheory.Bicategory.mateEquiv_id_comp_right, comp_counit, CategoryTheory.Bicategory.conjugateEquiv_id_comp_right_apply, CategoryTheory.Bicategory.conjugateEquiv_comp_id_right_apply, ofCat_comp, CategoryTheory.Bicategory.mateEquiv_hcomp, CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv_symm, CategoryTheory.Bicategory.mateEquiv_square, CategoryTheory.Bicategory.conjugateEquiv_associator_hom, CategoryTheory.Bicategory.Adj.comp_adj, comp_unit, CategoryTheory.Bicategory.conjugateEquiv_whiskerLeft
compCounit πŸ“–CompOp
3 mathmath: comp_counit, comp_left_triangle_aux, comp_right_triangle_aux
compUnit πŸ“–CompOp
3 mathmath: comp_left_triangle_aux, comp_right_triangle_aux, comp_unit
counit πŸ“–CompOp
13 mathmath: homEquivβ‚‚_symm_apply, CategoryTheory.Adjunction.ofCat_counit, homEquiv₁_apply, comp_counit, CategoryTheory.Bicategory.mateEquiv_symm_apply', CategoryTheory.Adjunction.toCat_counit_toNatTrans, left_triangle, CategoryTheory.Bicategory.conjugateEquiv_apply', CategoryTheory.Bicategory.conjugateEquiv_adjunction_id, CategoryTheory.Bicategory.conjugateEquiv_symm_apply', ext_iff, right_triangle, CategoryTheory.Bicategory.mateEquiv_apply'
id πŸ“–CompOp
8 mathmath: CategoryTheory.Bicategory.mateEquiv_comp_id_right, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id_symm, CategoryTheory.Bicategory.mateEquiv_id_comp_right, CategoryTheory.Bicategory.conjugateEquiv_id_comp_right_apply, CategoryTheory.Bicategory.conjugateEquiv_comp_id_right_apply, ofCat_id, CategoryTheory.Bicategory.Adj.id_adj, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id
instInhabitedId πŸ“–CompOpβ€”
ofIsLeftAdjoint πŸ“–CompOpβ€”
ofIsRightAdjoint πŸ“–CompOpβ€”
unit πŸ“–CompOp
13 mathmath: CategoryTheory.Bicategory.conjugateEquiv_adjunction_id_symm, CategoryTheory.Bicategory.mateEquiv_symm_apply', homEquivβ‚‚_apply, left_triangle, CategoryTheory.Bicategory.conjugateEquiv_apply', CategoryTheory.Adjunction.toCat_unit_toNatTrans, CategoryTheory.Adjunction.ofCat_unit, homEquiv₁_symm_apply, comp_unit, CategoryTheory.Bicategory.conjugateEquiv_symm_apply', ext_iff, right_triangle, CategoryTheory.Bicategory.mateEquiv_apply'

Theorems

NameKindAssumesProvesValidatesDepends On
comp_counit πŸ“–mathematicalβ€”counit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
comp
compCounit
β€”β€”
comp_left_triangle_aux πŸ“–mathematicalβ€”CategoryTheory.Bicategory.leftZigzag
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
compUnit
compCounit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.rightUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Bicategory.eval_bicategoricalComp
Mathlib.Tactic.Bicategory.eval_whiskerRight
Mathlib.Tactic.Bicategory.eval_of
Mathlib.Tactic.Bicategory.eval_whiskerLeft
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Bicategory.evalWhiskerRight_nil
Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of
Mathlib.Tactic.Bicategory.evalComp_cons
Mathlib.Tactic.Bicategory.evalComp_nil_nil
Mathlib.Tactic.Bicategory.evalComp_nil_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil
Mathlib.Tactic.Bicategory.evalWhiskerRight_comp
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_whisker
Mathlib.Tactic.Bicategory.evalWhiskerLeft_comp
Mathlib.Tactic.Bicategory.eval_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Bicategory.mk_eq_of_naturality
Mathlib.Tactic.Bicategory.naturality_comp
Mathlib.Tactic.Bicategory.naturality_inv
Mathlib.Tactic.Bicategory.naturality_associator
Mathlib.Tactic.Bicategory.naturality_whiskerRight
Mathlib.Tactic.Bicategory.naturality_id
Mathlib.Tactic.Bicategory.naturality_leftUnitor
Mathlib.Tactic.Bicategory.naturality_whiskerLeft
CategoryTheory.Bicategory.whisker_exchange
Mathlib.Tactic.Bicategory.evalWhiskerLeft_id
Mathlib.Tactic.Bicategory.evalWhiskerRight_id
Mathlib.Tactic.Bicategory.naturality_rightUnitor
left_triangle
comp_right_triangle_aux πŸ“–mathematicalβ€”CategoryTheory.Bicategory.rightZigzag
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
compUnit
compCounit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.leftUnitor
β€”Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Bicategory.eval_bicategoricalComp
Mathlib.Tactic.Bicategory.eval_whiskerLeft
Mathlib.Tactic.Bicategory.eval_of
Mathlib.Tactic.Bicategory.eval_whiskerRight
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Bicategory.evalWhiskerRight_nil
Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of
Mathlib.Tactic.Bicategory.evalComp_cons
Mathlib.Tactic.Bicategory.evalComp_nil_nil
Mathlib.Tactic.Bicategory.evalComp_nil_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons
Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil
Mathlib.Tactic.Bicategory.evalWhiskerLeft_comp
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_whisker
Mathlib.Tactic.Bicategory.evalWhiskerRight_comp
Mathlib.Tactic.Bicategory.eval_comp
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Bicategory.mk_eq_of_naturality
Mathlib.Tactic.Bicategory.naturality_comp
Mathlib.Tactic.Bicategory.naturality_associator
Mathlib.Tactic.Bicategory.naturality_whiskerLeft
Mathlib.Tactic.Bicategory.naturality_id
Mathlib.Tactic.Bicategory.naturality_whiskerRight
Mathlib.Tactic.Bicategory.naturality_inv
Mathlib.Tactic.Bicategory.naturality_leftUnitor
CategoryTheory.Bicategory.whisker_exchange
Mathlib.Tactic.Bicategory.evalWhiskerRight_id
Mathlib.Tactic.Bicategory.evalWhiskerLeft_id
Mathlib.Tactic.Bicategory.naturality_rightUnitor
right_triangle
comp_unit πŸ“–mathematicalβ€”unit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
comp
compUnit
β€”β€”
ext πŸ“–β€”unit
counit
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”unit
counit
β€”ext
left_triangle πŸ“–mathematicalβ€”CategoryTheory.Bicategory.leftZigzag
unit
counit
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.rightUnitor
β€”β€”
right_triangle πŸ“–mathematicalβ€”CategoryTheory.Bicategory.rightZigzag
unit
counit
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.leftUnitor
β€”β€”

CategoryTheory.Bicategory.Equivalence

Definitions

NameCategoryTheorems
counit πŸ“–CompOp
4 mathmath: right_triangle, left_triangle, right_triangle_hom, left_triangle_hom
hom πŸ“–CompOp
4 mathmath: right_triangle, left_triangle, right_triangle_hom, left_triangle_hom
id πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
inv πŸ“–CompOp
4 mathmath: right_triangle, left_triangle, right_triangle_hom, left_triangle_hom
mkOfAdjointifyCounit πŸ“–CompOpβ€”
unit πŸ“–CompOp
4 mathmath: right_triangle, left_triangle, right_triangle_hom, left_triangle_hom

Theorems

NameKindAssumesProvesValidatesDepends On
left_triangle πŸ“–mathematicalβ€”CategoryTheory.Bicategory.leftZigzagIso
hom
inv
unit
counit
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.leftUnitor
CategoryTheory.Iso.symm
CategoryTheory.Bicategory.rightUnitor
β€”β€”
left_triangle_hom πŸ“–mathematicalβ€”CategoryTheory.Bicategory.leftZigzag
hom
inv
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.comp
unit
counit
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.leftUnitor
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.rightUnitor
β€”left_triangle
right_triangle πŸ“–mathematicalβ€”CategoryTheory.Bicategory.rightZigzagIso
hom
inv
unit
counit
CategoryTheory.Iso.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Iso.symm
CategoryTheory.Bicategory.leftUnitor
β€”CategoryTheory.Iso.ext
CategoryTheory.Bicategory.right_triangle_of_left_triangle
left_triangle_hom
right_triangle_hom πŸ“–mathematicalβ€”CategoryTheory.Bicategory.rightZigzag
hom
inv
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.comp
unit
counit
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.leftUnitor
β€”right_triangle

CategoryTheory.Bicategory.IsLeftAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
mk πŸ“–mathematicalβ€”CategoryTheory.Bicategory.IsLeftAdjointβ€”β€”
nonempty πŸ“–mathematicalβ€”CategoryTheory.Bicategory.RightAdjointβ€”β€”

CategoryTheory.Bicategory.IsRightAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
mk πŸ“–mathematicalβ€”CategoryTheory.Bicategory.IsRightAdjointβ€”β€”
nonempty πŸ“–mathematicalβ€”CategoryTheory.Bicategory.LeftAdjointβ€”β€”

CategoryTheory.Bicategory.LeftAdjoint

Definitions

NameCategoryTheorems
adj πŸ“–CompOpβ€”
left πŸ“–CompOpβ€”

CategoryTheory.Bicategory.RightAdjoint

Definitions

NameCategoryTheorems
adj πŸ“–CompOpβ€”
right πŸ“–CompOpβ€”

---

← Back to Index