Documentation

Mathlib.CategoryTheory.Bicategory.Adjunction.Basic

Adjunctions in bicategories #

For 1-morphisms f : a ⟶ b and g : b ⟶ a in a bicategory, an adjunction between f and g consists of a pair of 2-morphisms η : 𝟙 a ⟶ f ≫ g and ε : g ≫ f ⟶ 𝟙 b satisfying the triangle identities. The 2-morphism η is called the unit and ε is called the counit.

Main definitions #

TODO #

@[reducible, inline]

The 2-morphism defined by the following pasting diagram:

a ------ ▸ a
  \    η      ◥   \
  f \   g  /       \ f
       ◢  /     ε      ◢
        b ------ ▸ b
Equations
    Instances For
      @[reducible, inline]

      The 2-morphism defined by the following pasting diagram:

              a ------ ▸ a
             ◥  \     η      ◥
        g /      \ f     / g
        /    ε      ◢   /
      b ------ ▸ b
      
      Equations
        Instances For
          structure CategoryTheory.Bicategory.Adjunction {B : Type u} [Bicategory B] {a b : B} (f : a b) (g : b a) :

          Adjunction between two 1-morphisms.

          Instances For
            theorem CategoryTheory.Bicategory.Adjunction.ext_iff {B : Type u} {inst✝ : Bicategory B} {a b : B} {f : a b} {g : b a} {x y : Adjunction f g} :
            x = y x.unit = y.unit x.counit = y.counit
            theorem CategoryTheory.Bicategory.Adjunction.ext {B : Type u} {inst✝ : Bicategory B} {a b : B} {f : a b} {g : b a} {x y : Adjunction f g} (unit : x.unit = y.unit) (counit : x.counit = y.counit) :
            x = y

            Adjunction between two 1-morphisms.

            Equations
              Instances For

                Adjunction between identities.

                Equations
                  Instances For
                    def CategoryTheory.Bicategory.Adjunction.compUnit {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :

                    Auxiliary definition for Adjunction.comp.

                    Equations
                      Instances For
                        def CategoryTheory.Bicategory.Adjunction.compCounit {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :

                        Auxiliary definition for Adjunction.comp.

                        Equations
                          Instances For
                            theorem CategoryTheory.Bicategory.Adjunction.comp_left_triangle_aux {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :
                            theorem CategoryTheory.Bicategory.Adjunction.comp_right_triangle_aux {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :
                            def CategoryTheory.Bicategory.Adjunction.comp {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :

                            Composition of adjunctions.

                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Bicategory.Adjunction.comp_counit {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :
                                (adj₁.comp adj₂).counit = adj₁.compCounit adj₂
                                @[simp]
                                theorem CategoryTheory.Bicategory.Adjunction.comp_unit {B : Type u} [Bicategory B] {a b c : B} {f₁ : a b} {g₁ : b a} {f₂ : b c} {g₂ : c b} (adj₁ : Adjunction f₁ g₁) (adj₂ : Adjunction f₂ g₂) :
                                (adj₁.comp adj₂).unit = adj₁.compUnit adj₂
                                @[reducible, inline]

                                The isomorphism version of leftZigzag.

                                Equations
                                  Instances For
                                    @[reducible, inline]

                                    The isomorphism version of rightZigzag.

                                    Equations
                                      Instances For
                                        structure CategoryTheory.Bicategory.Equivalence {B : Type u} [Bicategory B] (a b : B) :
                                        Type (max v w)

                                        Adjoint equivalences between two objects.

                                        Instances For

                                          Adjoint equivalences between two objects.

                                          Equations
                                            Instances For

                                              The identity 1-morphism is an equivalence.

                                              Equations
                                                Instances For

                                                  Construct an adjoint equivalence from 2-isomorphisms by upgrading ε to a counit.

                                                  Equations
                                                    Instances For
                                                      structure CategoryTheory.Bicategory.RightAdjoint {B : Type u} [Bicategory B] {a b : B} (left : a b) :
                                                      Type (max v w)

                                                      A structure giving a chosen right adjoint of a 1-morphism left.

                                                      Instances For
                                                        class CategoryTheory.Bicategory.IsLeftAdjoint {B : Type u} [Bicategory B] {a b : B} (left : a b) :

                                                        The existence of a right adjoint of f.

                                                        Instances
                                                          theorem CategoryTheory.Bicategory.IsLeftAdjoint.mk {B : Type u} [Bicategory B] {a b : B} {f : a b} {g : b a} (adj : Adjunction f g) :

                                                          Use the axiom of choice to extract a right adjoint from an IsLeftAdjoint instance.

                                                          Equations
                                                            Instances For
                                                              def CategoryTheory.Bicategory.rightAdjoint {B : Type u} [Bicategory B] {a b : B} (f : a b) [IsLeftAdjoint f] :
                                                              b a

                                                              The right adjoint of a 1-morphism.

                                                              Equations
                                                                Instances For

                                                                  Evidence that rightAdjoint f is a right adjoint of f.

                                                                  Equations
                                                                    Instances For
                                                                      structure CategoryTheory.Bicategory.LeftAdjoint {B : Type u} [Bicategory B] {a b : B} (right : b a) :
                                                                      Type (max v w)

                                                                      A structure giving a chosen left adjoint of a 1-morphism right.

                                                                      Instances For
                                                                        class CategoryTheory.Bicategory.IsRightAdjoint {B : Type u} [Bicategory B] {a b : B} (right : b a) :

                                                                        The existence of a left adjoint of right.

                                                                        Instances
                                                                          theorem CategoryTheory.Bicategory.IsRightAdjoint.mk {B : Type u} [Bicategory B] {a b : B} {f : a b} {g : b a} (adj : Adjunction f g) :

                                                                          Use the axiom of choice to extract a left adjoint from an IsRightAdjoint instance.

                                                                          Equations
                                                                            Instances For
                                                                              def CategoryTheory.Bicategory.leftAdjoint {B : Type u} [Bicategory B] {a b : B} (f : b a) [IsRightAdjoint f] :
                                                                              a b

                                                                              The left adjoint of a 1-morphism.

                                                                              Equations
                                                                                Instances For

                                                                                  Evidence that leftAdjoint f is a left adjoint of f.

                                                                                  Equations
                                                                                    Instances For