Documentation Verification Report

Grothendieck

📁 Source: Mathlib/CategoryTheory/Bicategory/Grothendieck.lean

Statistics

MetricCount
DefinitionsCoGrothendieck, base, fiber, base, category, categoryStruct, fiber, forget, instInhabitedHom, map, mapCompIso, mapIdIso, «term∫ᶜ_», base, fiber, base, category, categoryStruct, fiber, forget, instInhabitedHom, map, mapCompIso, mapIdIso, «term∫_»
25
Theoremsext, ext_iff, categoryStruct_comp_base, categoryStruct_comp_fiber, categoryStruct_id_base, categoryStruct_id_fiber, ext, ext_iff, forget_map, forget_obj, map_comp_eq, map_comp_forget, map_id_eq, map_id_map, map_map_base, map_map_fiber, map_obj_base, map_obj_fiber, ext, ext_iff, categoryStruct_comp_base, categoryStruct_comp_fiber, categoryStruct_id_base, categoryStruct_id_fiber, ext, ext_iff, forget_map, forget_obj, map_comp_eq, map_comp_forget, map_id_eq, map_id_map, map_map_base, map_map_fiber, map_obj_base, map_obj_fiber
36
Total61

CategoryTheory.Pseudofunctor

Definitions

NameCategoryTheorems
CoGrothendieck 📖CompData
30 mathmath: CoGrothendieck.categoryStruct_id_base, CoGrothendieck.categoryStruct_id_fiber, CoGrothendieck.map_comp_eq, CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CoGrothendieck.map_map_base, CoGrothendieck.map_map_fiber, CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CoGrothendieck.ι_map_base, CoGrothendieck.map_obj_fiber, CoGrothendieck.Hom.congr, CoGrothendieck.categoryStruct_comp_base, CoGrothendieck.ι_obj_fiber, CoGrothendieck.ι_map_fiber, CoGrothendieck.isStronglyCartesian_homCartesianLift, CoGrothendieck.isHomLift_cartesianLift, CoGrothendieck.instIsFiberedForget, CoGrothendieck.forget_obj, CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CoGrothendieck.ι_obj_base, CoGrothendieck.map_comp_forget, CoGrothendieck.comp_const, CoGrothendieck.map_id_eq, CoGrothendieck.map_obj_base, CoGrothendieck.compIso_inv_app, CoGrothendieck.categoryStruct_comp_fiber, CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CoGrothendieck.map_id_map, CoGrothendieck.forget_map, CoGrothendieck.compIso_hom_app, CoGrothendieck.isHomLift_homCartesianLift

CategoryTheory.Pseudofunctor.CoGrothendieck

Definitions

NameCategoryTheorems
base 📖CompOp
15 mathmath: categoryStruct_id_base, categoryStruct_id_fiber, map_map_base, map_map_fiber, map_obj_fiber, Hom.congr, categoryStruct_comp_base, ext_iff, ι_map_fiber, forget_obj, ι_obj_base, map_obj_base, categoryStruct_comp_fiber, Hom.ext_iff, isHomLift_homCartesianLift
category 📖CompOp
25 mathmath: map_comp_eq, instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, map_map_base, map_map_fiber, instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, ι_map_base, map_obj_fiber, ι_obj_fiber, ι_map_fiber, isStronglyCartesian_homCartesianLift, isHomLift_cartesianLift, instIsFiberedForget, forget_obj, instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, ι_obj_base, map_comp_forget, comp_const, map_id_eq, map_obj_base, compIso_inv_app, instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, map_id_map, forget_map, compIso_hom_app, isHomLift_homCartesianLift
categoryStruct 📖CompOp
5 mathmath: categoryStruct_id_base, categoryStruct_id_fiber, Hom.congr, categoryStruct_comp_base, categoryStruct_comp_fiber
fiber 📖CompOp
10 mathmath: categoryStruct_id_fiber, map_map_base, map_map_fiber, map_obj_fiber, Hom.congr, ext_iff, ι_obj_fiber, ι_map_fiber, categoryStruct_comp_fiber, Hom.ext_iff
forget 📖CompOp
14 mathmath: instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, isStronglyCartesian_homCartesianLift, isHomLift_cartesianLift, instIsFiberedForget, forget_obj, instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, map_comp_forget, comp_const, compIso_inv_app, instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, forget_map, compIso_hom_app, isHomLift_homCartesianLift
instInhabitedHom 📖CompOp
map 📖CompOp
8 mathmath: map_comp_eq, map_map_base, map_map_fiber, map_obj_fiber, map_comp_forget, map_id_eq, map_obj_base, map_id_map
mapCompIso 📖CompOp
mapIdIso 📖CompOp
«term∫ᶜ_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
categoryStruct_comp_base 📖mathematicalHom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.CoGrothendieck
categoryStruct
CategoryTheory.Category.toCategoryStruct
base
categoryStruct_comp_fiber 📖mathematicalHom.fiber
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.CoGrothendieck
categoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
base
CategoryTheory.Cat.str
fiber
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
Hom.base
CategoryTheory.LocallyDiscrete.categoryStruct
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapComp
categoryStruct_id_base 📖mathematicalHom.base
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.CoGrothendieck
categoryStruct
CategoryTheory.Category.toCategoryStruct
base
categoryStruct_id_fiber 📖mathematicalHom.fiber
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.CoGrothendieck
categoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
base
CategoryTheory.Cat.str
CategoryTheory.Functor.id
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapId
fiber
ext 📖base
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
fiber
ext_iff 📖mathematicalbase
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
fiber
ext
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
Hom.base
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
base
map_comp_eq 📖mathematicalmap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.CoGrothendieck
category
CategoryTheory.Functor.ext_of_iso
CategoryTheory.Bicategory.Strict.associator_eqToIso
CategoryTheory.Cat.bicategory.strict
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.CoGrothendieck
category
map
forget
map_id_eq 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct
CategoryTheory.Functor.id
CategoryTheory.Pseudofunctor.CoGrothendieck
category
CategoryTheory.Functor.ext_of_iso
CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso
CategoryTheory.Cat.bicategory.strict
CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_id_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.CoGrothendieck
category
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct
Hom.ext
CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso
CategoryTheory.Cat.bicategory.strict
CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_map_base 📖mathematicalHom.base
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Pseudofunctor.StrongTrans.app
fiber
CategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.CoGrothendieck
category
map
map_map_fiber 📖mathematicalHom.fiber
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Pseudofunctor.StrongTrans.app
fiber
CategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.CoGrothendieck
category
map
CategoryTheory.CategoryStruct.comp
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
Hom.base
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Pseudofunctor.StrongTrans.naturality
map_obj_base 📖mathematicalbase
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.CoGrothendieck
category
map
map_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.CoGrothendieck
category
map
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Pseudofunctor.StrongTrans.app

CategoryTheory.Pseudofunctor.CoGrothendieck.Hom

Definitions

NameCategoryTheorems
base 📖CompOp
9 mathmath: CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_base, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_base, congr, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_base, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.CoGrothendieck.forget_map, ext_iff
fiber 📖CompOp
6 mathmath: CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, congr, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_fiber, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖base
fiber
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Pseudofunctor.CoGrothendieck.base
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck.fiber
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
ext_iff 📖mathematicalfiber
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Pseudofunctor.CoGrothendieck.base
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck.fiber
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
base
CategoryTheory.eqToHom
CategoryTheory.eqToHom_naturality
CategoryTheory.Category.id_comp
ext

CategoryTheory.Pseudofunctor.Grothendieck

Definitions

NameCategoryTheorems
base 📖CompOp
12 mathmath: ext_iff, categoryStruct_id_fiber, map_obj_fiber, categoryStruct_id_base, Hom.ext_iff, Hom.congr, map_map_fiber, categoryStruct_comp_base, forget_obj, map_obj_base, categoryStruct_comp_fiber, map_map_base
category 📖CompOp
10 mathmath: map_id_eq, map_id_map, map_obj_fiber, forget_map, map_comp_forget, map_comp_eq, map_map_fiber, forget_obj, map_obj_base, map_map_base
categoryStruct 📖CompOp
5 mathmath: categoryStruct_id_fiber, categoryStruct_id_base, Hom.congr, categoryStruct_comp_base, categoryStruct_comp_fiber
fiber 📖CompOp
8 mathmath: ext_iff, categoryStruct_id_fiber, map_obj_fiber, Hom.ext_iff, Hom.congr, map_map_fiber, categoryStruct_comp_fiber, map_map_base
forget 📖CompOp
3 mathmath: forget_map, map_comp_forget, forget_obj
instInhabitedHom 📖CompOp
map 📖CompOp
8 mathmath: map_id_eq, map_id_map, map_obj_fiber, map_comp_forget, map_comp_eq, map_map_fiber, map_obj_base, map_map_base
mapCompIso 📖CompOp
mapIdIso 📖CompOp
«term∫_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
categoryStruct_comp_base 📖mathematicalHom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.Grothendieck
categoryStruct
CategoryTheory.Category.toCategoryStruct
base
categoryStruct_comp_fiber 📖mathematicalHom.fiber
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.Grothendieck
categoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
base
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.LocallyDiscrete.categoryStruct
Quiver.Hom.toLoc
Hom.base
fiber
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Pseudofunctor.mapComp
CategoryTheory.Functor.map
categoryStruct_id_base 📖mathematicalHom.base
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.Grothendieck
categoryStruct
CategoryTheory.Category.toCategoryStruct
base
categoryStruct_id_fiber 📖mathematicalHom.fiber
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.Grothendieck
categoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.Functor.id
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Pseudofunctor.mapId
fiber
ext 📖base
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
fiber
ext_iff 📖mathematicalbase
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
fiber
ext
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.Grothendieck
category
forget
Hom.base
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.Grothendieck
category
forget
base
map_comp_eq 📖mathematicalmap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor
CategoryTheory.LocallyDiscrete
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.Grothendieck
category
CategoryTheory.Functor.ext_of_iso
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv
CategoryTheory.Bicategory.Strict.associator_eqToIso
CategoryTheory.Cat.bicategory.strict
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
map_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.Grothendieck
category
map
forget
map_id_eq 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor
CategoryTheory.LocallyDiscrete
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct
CategoryTheory.Functor.id
CategoryTheory.Pseudofunctor.Grothendieck
category
CategoryTheory.Functor.ext_of_iso
CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso
CategoryTheory.Cat.bicategory.strict
CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso
CategoryTheory.Category.id_comp
map_id_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.Grothendieck
category
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor
CategoryTheory.LocallyDiscrete
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct
Hom.ext
CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso
CategoryTheory.Cat.bicategory.strict
CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso
CategoryTheory.Category.id_comp
map_map_base 📖mathematicalHom.base
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Pseudofunctor.StrongTrans.app
fiber
CategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.Grothendieck
category
map
map_map_fiber 📖mathematicalHom.fiber
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Pseudofunctor.StrongTrans.app
fiber
CategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.Grothendieck
category
map
CategoryTheory.CategoryStruct.comp
Prefunctor.map
Quiver.Hom.toLoc
Hom.base
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.StrongTrans.naturality
map_obj_base 📖mathematicalbase
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.Grothendieck
category
map
map_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.Grothendieck
category
map
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Pseudofunctor.StrongTrans.app

CategoryTheory.Pseudofunctor.Grothendieck.Hom

Definitions

NameCategoryTheorems
base 📖CompOp
8 mathmath: CategoryTheory.Pseudofunctor.Grothendieck.forget_map, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_base, ext_iff, congr, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_base, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base
fiber 📖CompOp
5 mathmath: CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, ext_iff, congr, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.Pseudofunctor.Grothendieck.base
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.Pseudofunctor.Grothendieck.fiber
CategoryTheory.eqToHom
fiber
CategoryTheory.Category.id_comp
ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.Pseudofunctor.Grothendieck.base
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
base
CategoryTheory.Pseudofunctor.Grothendieck.fiber
CategoryTheory.eqToHom
fiber
CategoryTheory.Category.id_comp
ext

---

← Back to Index