Documentation

Mathlib.CategoryTheory.Bicategory.Grothendieck

The Grothendieck and CoGrothendieck constructions #

The Grothendieck construction #

Given a category 𝒮 and any pseudofunctor F from 𝒮 to Cat, we associate to it a category ∫ F, defined as follows:

The category ∫ F is equipped with a projection functor ∫ F ⥤ 𝒮, given by projecting to the first factors, i.e.

The CoGrothendieck construction #

Given a category 𝒮 and any pseudofunctor F from 𝒮ᵒᵖ to Cat, we associate to it a category ∫ᶜ F, defined as follows:

The category ∫ᶜ F is equipped with a functor ∫ᶜ F ⥤ 𝒮, given by projecting to the first factors, i.e.

Naming conventions #

The name Grothendieck is reserved for the construction on covariant pseudofunctors from 𝒮 to Cat, whereas the word CoGrothendieck is used for the contravariant construction. This is consistent with the convention for the Grothendieck construction on 1-functors CategoryTheory.Grothendieck.

Future work / TODO #

  1. Once the bicategory of pseudofunctors has been defined, show that this construction forms a pseudofunctor from LocallyDiscrete 𝒮 ⥤ᵖ Catᵒᵖ to Cat.
  2. Deduce the results in CategoryTheory.Grothendieck as a specialization of Pseudofunctor.Grothendieck.

References #

[Vistoli2008] "Notes on Grothendieck Topologies, Fibered Categories and Descent Theory" by Angelo Vistoli

The type of objects in the fibered category associated to a pseudofunctor from a 1-category to Cat.

  • base : 𝒮

    The underlying object in the base category.

  • fiber : (F.obj { as := self.base })

    The object in the fiber of the base object.

Instances For
    theorem CategoryTheory.Pseudofunctor.Grothendieck.ext {𝒮 : Type u₁} {inst✝ : Category.{v₁, u₁} 𝒮} {F : Pseudofunctor (LocallyDiscrete 𝒮) Cat} {x y : F.Grothendieck} (base : x.base = y.base) (fiber : x.fiber y.fiber) :
    x = y

    Notation for the Grothendieck category associated to a pseudofunctor F.

    Equations
      Instances For
        structure CategoryTheory.Pseudofunctor.Grothendieck.Hom {𝒮 : Type u₁} [Category.{v₁, u₁} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮) Cat} (X Y : F.Grothendieck) :
        Type (max v₁ v₂)

        A morphism in the Grothendieck construction ∫ F between two points X Y : ∫ F consists of a morphism in the base category base : X.base ⟶ Y.base and a morphism in a fiber f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber.

        Instances For
          theorem CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext {𝒮 : Type u₁} [Category.{v₁, u₁} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮) Cat} {a b : F.Grothendieck} (f g : a b) (hfg₁ : f.base = g.base) (hfg₂ : CategoryStruct.comp (eqToHom ) f.fiber = g.fiber) :
          f = g

          The projection ∫ F ⥤ 𝒮 given by projecting both objects and homs to the first factor.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Pseudofunctor.Grothendieck.forget_map {𝒮 : Type u₁} [Category.{v₁, u₁} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮) Cat) {X✝ Y✝ : F.Grothendieck} (f : X✝ Y✝) :
              (forget F).map f = f.base

              The Grothendieck construction is functorial: a strong natural transformation α : F ⟶ G induces a functor Grothendieck.map : ∫ F ⥤ ∫ G.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Pseudofunctor.Grothendieck.map_map_base {𝒮 : Type u₁} [Category.{v₁, u₁} 𝒮] {F G : Pseudofunctor (LocallyDiscrete 𝒮) Cat} (α : F G) {a b : F.Grothendieck} (f : a b) :
                  ((map α).map f).base = f.base

                  The natural isomorphism witnessing the pseudo-unity constraint of Grothendieck.map.

                  Equations
                    Instances For

                      The natural isomorphism witnessing the pseudo-functoriality of Grothendieck.map.

                      Equations
                        Instances For

                          The type of objects in the fibered category associated to a contravariant pseudofunctor from a 1-category to Cat.

                          • base : 𝒮

                            The underlying object in the base category.

                          • fiber : (F.obj { as := Opposite.op self.base })

                            The object in the fiber of the base object.

                          Instances For
                            theorem CategoryTheory.Pseudofunctor.CoGrothendieck.ext {𝒮 : Type u₁} {inst✝ : Category.{v₁, u₁} 𝒮} {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {x y : F.CoGrothendieck} (base : x.base = y.base) (fiber : x.fiber y.fiber) :
                            x = y

                            Notation for the CoGrothendieck category associated to a pseudofunctor F.

                            Equations
                              Instances For

                                A morphism in the CoGrothendieck construction ∫ᶜ F between two points X Y : ∫ᶜ F consists of a morphism in the base category base : X.base ⟶ Y.base and a morphism in a fiber f.fiber : X.fiber ⟶ (F.map base.op.toLoc).obj Y.fiber.

                                Instances For

                                  The projection ∫ᶜ F ⥤ 𝒮 given by projecting both objects and homs to the first factor.

                                  Equations
                                    Instances For

                                      The CoGrothendieck construction is functorial: a strong natural transformation α : F ⟶ G induces a functor CoGrothendieck.map : ∫ᶜ F ⥤ ∫ᶜ G.

                                      Equations
                                        Instances For

                                          The natural isomorphism witnessing the pseudo-unity constraint of CoGrothendieck.map.

                                          Equations
                                            Instances For

                                              The natural isomorphism witnessing the pseudo-functoriality of CoGrothendieck.map.

                                              Equations
                                                Instances For