| Name | Category | Theorems |
adj 📖 | CompOp | 2 mathmath: CategoryTheory.ReflQuiv.adj.unit.map_app_eq, adj_homEquiv
|
category 📖 | CompOp | 20 mathmath: equivOfIso_symm_apply, comp_eq_comp, homEquivOfIso_symm_apply, CategoryTheory.Cat.free_map, homEquivOfIso_apply, inv_map_hom_map_of_iso, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, forget_map, adj_homEquiv, CategoryTheory.ReflQuiv.forgetToQuiv_obj, hom_map_inv_map_of_iso, CategoryTheory.ReflQuiv.forget_forgetToQuiv, CategoryTheory.Cat.free_obj, CategoryTheory.ReflQuiv.forgetToQuiv_map, inv_obj_hom_obj_of_iso, hom_obj_inv_obj_of_iso, id_eq_id, CategoryTheory.ReflQuiv.forgetToQuiv.Faithful, forget_obj, equivOfIso_apply
|
equivOfIso 📖 | CompOp | 2 mathmath: equivOfIso_symm_apply, equivOfIso_apply
|
forget 📖 | CompOp | 5 mathmath: CategoryTheory.ReflQuiv.adj.unit.map_app_eq, forget_map, adj_homEquiv, CategoryTheory.ReflQuiv.forget_forgetToQuiv, forget_obj
|
freeMapPathsOfCompPathCompositionIso 📖 | CompOp | — |
homEquivOfIso 📖 | CompOp | 2 mathmath: homEquivOfIso_symm_apply, homEquivOfIso_apply
|
instCoeSortType 📖 | CompOp | — |
instInhabited 📖 | CompOp | — |
isoOfEquiv 📖 | CompOp | — |
of 📖 | CompOp | 5 mathmath: CategoryTheory.Prefunctor.of_toQuivHom, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, adj_homEquiv, CategoryTheory.ReflQuiv.forgetToQuiv_obj, forget_obj
|
pathCompositionNaturality 📖 | CompOp | — |
pathsEquiv 📖 | CompOp | 1 mathmath: adj_homEquiv
|
str' 📖 | CompOp | 14 mathmath: equivOfIso_symm_apply, comp_eq_comp, homEquivOfIso_symm_apply, CategoryTheory.Cat.free_map, homEquivOfIso_apply, inv_map_hom_map_of_iso, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.Prefunctor.to_ofQuivHom, hom_map_inv_map_of_iso, CategoryTheory.Cat.free_obj, inv_obj_hom_obj_of_iso, hom_obj_inv_obj_of_iso, id_eq_id, equivOfIso_apply
|