Documentation Verification Report

Quiv

📁 Source: Mathlib/CategoryTheory/Category/Quiv.lean

Statistics

MetricCount
Definitionsfree, freeMap, freeMapCompIso, freeMapIdIso, ofQuivHom, toQuivHom, Quiv, adj, category, equivOfIso, forget, freeMapPathsOfCompPathCompositionIso, homEquivOfIso, instCoeSortType, instInhabited, isoOfEquiv, of, pathCompositionNaturality, pathsEquiv, str'
20
TheoremsfreeMapCompIso_hom_app, freeMapCompIso_inv_app, freeMapIdIso_hom_app, freeMapIdIso_inv_app, freeMap_comp, freeMap_id, freeMap_map, freeMap_obj, free_map, free_obj, of_toQuivHom, to_ofQuivHom, adj_homEquiv, comp_eq_comp, equivOfIso_apply, equivOfIso_symm_apply, forget_map, forget_obj, freeMap_pathsOf_pathComposition, homEquivOfIso_apply, homEquivOfIso_symm_apply, homOfEq_map_homOfEq, hom_map_inv_map_of_iso, hom_obj_inv_obj_of_iso, id_eq_id, inv_map_hom_map_of_iso, inv_obj_hom_obj_of_iso, lift_map, lift_obj, pathComposition_naturality, pathsOf_freeMap_toPrefunctor, pathsOf_pathComposition_toPrefunctor
32
Total52

CategoryTheory

Definitions

NameCategoryTheorems
Quiv 📖CompOp
20 mathmath: Quiv.equivOfIso_symm_apply, Quiv.comp_eq_comp, Quiv.homEquivOfIso_symm_apply, Cat.free_map, Quiv.homEquivOfIso_apply, Quiv.inv_map_hom_map_of_iso, ReflQuiv.adj.unit.map_app_eq, Quiv.forget_map, Quiv.adj_homEquiv, ReflQuiv.forgetToQuiv_obj, Quiv.hom_map_inv_map_of_iso, ReflQuiv.forget_forgetToQuiv, Cat.free_obj, ReflQuiv.forgetToQuiv_map, Quiv.inv_obj_hom_obj_of_iso, Quiv.hom_obj_inv_obj_of_iso, Quiv.id_eq_id, ReflQuiv.forgetToQuiv.Faithful, Quiv.forget_obj, Quiv.equivOfIso_apply

CategoryTheory.Cat

Definitions

NameCategoryTheorems
free 📖CompOp
4 mathmath: free_map, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.Quiv.adj_homEquiv, free_obj
freeMap 📖CompOp
13 mathmath: freeMap_map, freeMap_obj, freeMap_comp, freeMapIdIso_hom_app, free_map, freeReflMap_naturality, freeMap_id, CategoryTheory.Quiv.pathComposition_naturality, freeMapCompIso_hom_app, CategoryTheory.Quiv.freeMap_pathsOf_pathComposition, CategoryTheory.Quiv.pathsOf_freeMap_toPrefunctor, freeMapIdIso_inv_app, freeMapCompIso_inv_app
freeMapCompIso 📖CompOp
2 mathmath: freeMapCompIso_hom_app, freeMapCompIso_inv_app
freeMapIdIso 📖CompOp
2 mathmath: freeMapIdIso_hom_app, freeMapIdIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
freeMapCompIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
freeMap
Prefunctor.comp
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
freeMapCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Prefunctor.obj
freeMapCompIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Functor.comp
freeMap
Prefunctor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
freeMapCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Prefunctor.obj
freeMapIdIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
freeMap
Prefunctor.id
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
freeMapIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
freeMapIdIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Functor.id
freeMap
Prefunctor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
freeMapIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
freeMap_comp 📖mathematicalfreeMap
Prefunctor.comp
CategoryTheory.Functor.comp
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Functor.ext_of_iso
freeMap_id 📖mathematicalfreeMap
Prefunctor.id
CategoryTheory.Functor.id
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Functor.ext_of_iso
freeMap_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
freeMap
Prefunctor.mapPath
freeMap_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
freeMap
Prefunctor.obj
free_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Quiv
CategoryTheory.Quiv.category
CategoryTheory.Cat
category
free
CategoryTheory.Functor.toCatHom
CategoryTheory.Paths
CategoryTheory.Bundled.α
Quiver
CategoryTheory.Paths.categoryPaths
CategoryTheory.Quiv.str'
freeMap
CategoryTheory.Prefunctor.ofQuivHom
free_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Quiv
CategoryTheory.Quiv.category
CategoryTheory.Cat
category
free
of
CategoryTheory.Paths
CategoryTheory.Bundled.α
Quiver
CategoryTheory.Paths.categoryPaths
CategoryTheory.Quiv.str'

CategoryTheory.Prefunctor

Definitions

NameCategoryTheorems
ofQuivHom 📖CompOp
3 mathmath: CategoryTheory.Cat.free_map, of_toQuivHom, to_ofQuivHom
toQuivHom 📖CompOp
2 mathmath: of_toQuivHom, to_ofQuivHom

Theorems

NameKindAssumesProvesValidatesDepends On
of_toQuivHom 📖mathematicalofQuivHom
CategoryTheory.Quiv.of
toQuivHom
to_ofQuivHom 📖mathematicaltoQuivHom
CategoryTheory.Bundled.α
Quiver
CategoryTheory.Quiv.str'
ofQuivHom

CategoryTheory.Quiv

Definitions

NameCategoryTheorems
adj 📖CompOp
2 mathmath: CategoryTheory.ReflQuiv.adj.unit.map_app_eq, adj_homEquiv
category 📖CompOp
20 mathmath: equivOfIso_symm_apply, comp_eq_comp, homEquivOfIso_symm_apply, CategoryTheory.Cat.free_map, homEquivOfIso_apply, inv_map_hom_map_of_iso, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, forget_map, adj_homEquiv, CategoryTheory.ReflQuiv.forgetToQuiv_obj, hom_map_inv_map_of_iso, CategoryTheory.ReflQuiv.forget_forgetToQuiv, CategoryTheory.Cat.free_obj, CategoryTheory.ReflQuiv.forgetToQuiv_map, inv_obj_hom_obj_of_iso, hom_obj_inv_obj_of_iso, id_eq_id, CategoryTheory.ReflQuiv.forgetToQuiv.Faithful, forget_obj, equivOfIso_apply
equivOfIso 📖CompOp
2 mathmath: equivOfIso_symm_apply, equivOfIso_apply
forget 📖CompOp
5 mathmath: CategoryTheory.ReflQuiv.adj.unit.map_app_eq, forget_map, adj_homEquiv, CategoryTheory.ReflQuiv.forget_forgetToQuiv, forget_obj
freeMapPathsOfCompPathCompositionIso 📖CompOp
homEquivOfIso 📖CompOp
2 mathmath: homEquivOfIso_symm_apply, homEquivOfIso_apply
instCoeSortType 📖CompOp
instInhabited 📖CompOp
isoOfEquiv 📖CompOp
of 📖CompOp
5 mathmath: CategoryTheory.Prefunctor.of_toQuivHom, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, adj_homEquiv, CategoryTheory.ReflQuiv.forgetToQuiv_obj, forget_obj
pathCompositionNaturality 📖CompOp
pathsEquiv 📖CompOp
1 mathmath: adj_homEquiv
str' 📖CompOp
14 mathmath: equivOfIso_symm_apply, comp_eq_comp, homEquivOfIso_symm_apply, CategoryTheory.Cat.free_map, homEquivOfIso_apply, inv_map_hom_map_of_iso, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.Prefunctor.to_ofQuivHom, hom_map_inv_map_of_iso, CategoryTheory.Cat.free_obj, inv_obj_hom_obj_of_iso, hom_obj_inv_obj_of_iso, id_eq_id, equivOfIso_apply

Theorems

NameKindAssumesProvesValidatesDepends On
adj_homEquiv 📖mathematicalCategoryTheory.Adjunction.homEquiv
CategoryTheory.Quiv
category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.free
forget
adj
of
CategoryTheory.Cat.of
Equiv.trans
Quiver.Hom
CategoryTheory.Cat.instQuiver
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Functor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
Prefunctor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.Hom.equivFunctor
pathsEquiv
comp_eq_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Quiv
CategoryTheory.Category.toCategoryStruct
category
Prefunctor.comp
CategoryTheory.Bundled.α
Quiver
str'
equivOfIso_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Bundled.α
Quiver
EquivLike.toFunLike
Equiv.instEquivLike
equivOfIso
Prefunctor.obj
str'
CategoryTheory.Iso.hom
CategoryTheory.Quiv
category
equivOfIso_symm_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Bundled.α
Quiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivOfIso
Prefunctor.obj
str'
CategoryTheory.Iso.inv
CategoryTheory.Quiv
category
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Quiv
category
forget
CategoryTheory.Functor.toPrefunctor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Quiv
category
forget
of
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
freeMap_pathsOf_pathComposition 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.freeMap
CategoryTheory.Paths.of
CategoryTheory.pathComposition
CategoryTheory.Functor.id
CategoryTheory.Paths.ext_functor
CategoryTheory.composePath_toPath
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homEquivOfIso_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Bundled.α
Quiver
str'
Prefunctor.obj
CategoryTheory.Iso.hom
CategoryTheory.Quiv
category
EquivLike.toFunLike
Equiv.instEquivLike
homEquivOfIso
Prefunctor.map
homEquivOfIso_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Bundled.α
Quiver
str'
Prefunctor.obj
CategoryTheory.Iso.hom
CategoryTheory.Quiv
category
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquivOfIso
Quiver.homOfEq
CategoryTheory.Iso.inv
Prefunctor.map
homOfEq_map_homOfEq 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Quiver.homOfEq
Quiver.Hom
hom_map_inv_map_of_iso 📖mathematicalPrefunctor.map
CategoryTheory.Bundled.α
Quiver
str'
CategoryTheory.Iso.hom
CategoryTheory.Quiv
category
Prefunctor.obj
CategoryTheory.Iso.inv
Quiver.homOfEq
Prefunctor.comp_map
Prefunctor.congr_obj
CategoryTheory.Iso.inv_hom_id
Prefunctor.congr_hom
hom_obj_inv_obj_of_iso 📖mathematicalPrefunctor.obj
CategoryTheory.Bundled.α
Quiver
str'
CategoryTheory.Iso.hom
CategoryTheory.Quiv
category
CategoryTheory.Iso.inv
Equiv.right_inv
id_eq_id 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Quiv
CategoryTheory.Category.toCategoryStruct
category
Prefunctor.id
CategoryTheory.Bundled.α
Quiver
str'
inv_map_hom_map_of_iso 📖mathematicalPrefunctor.map
CategoryTheory.Bundled.α
Quiver
str'
CategoryTheory.Iso.inv
CategoryTheory.Quiv
category
Prefunctor.obj
CategoryTheory.Iso.hom
Quiver.homOfEq
hom_map_inv_map_of_iso
inv_obj_hom_obj_of_iso 📖mathematicalPrefunctor.obj
CategoryTheory.Bundled.α
Quiver
str'
CategoryTheory.Iso.inv
CategoryTheory.Quiv
category
CategoryTheory.Iso.hom
Equiv.left_inv
lift_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
lift
CategoryTheory.composePath
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Prefunctor.mapPath
lift_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
lift
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
pathComposition_naturality 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.freeMap
CategoryTheory.Functor.toPrefunctor
CategoryTheory.pathComposition
CategoryTheory.Paths.ext_functor
CategoryTheory.composePath_toPath
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
pathsOf_freeMap_toPrefunctor 📖mathematicalPrefunctor.comp
CategoryTheory.Paths
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Paths.categoryPaths
CategoryTheory.Paths.of
CategoryTheory.Functor.toPrefunctor
CategoryTheory.Cat.freeMap
pathsOf_pathComposition_toPrefunctor 📖mathematicalPrefunctor.comp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Paths.of
CategoryTheory.Functor.toPrefunctor
CategoryTheory.pathComposition
Prefunctor.id
CategoryTheory.Category.id_comp

---

← Back to Index