Documentation

Mathlib.CategoryTheory.Category.Quiv

The category of quivers #

The category of (bundled) quivers, and the free/forgetful adjunction between Cat and Quiv.

def CategoryTheory.Quiv :
Type (max (u + 1) u (v + 1))

Category of quivers.

Equations
    Instances For

      Construct a bundled Quiv from the underlying type and the typeclass.

      Equations
        Instances For

          The forgetful functor from categories to quivers.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Quiv.forget_map {Xāœ Yāœ : Cat} (F : Xāœ ⟶ Yāœ) :

              The identity in the category of quivers equals the identity prefunctor.

              theorem CategoryTheory.Quiv.comp_eq_comp {X Y Z : Quiv} (F : X ⟶ Y) (G : Y ⟶ Z) :

              Composition in the category of quivers equals prefunctor composition.

              Prefunctors between quivers define arrows in Quiv.

              Equations
                Instances For
                  def CategoryTheory.Prefunctor.ofQuivHom {C D : Quiv} (F : C ⟶ D) :
                  ↑C ℤq ↑D

                  Arrows in Quiv define prefunctors.

                  Equations
                    Instances For
                      def CategoryTheory.Cat.freeMap {V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] (F : V ℤq W) :

                      A prefunctor V ℤq W induces a functor between the path categories defined by F.mapPath.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Cat.freeMap_obj {V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] (F : V ℤq W) (aāœ : V) :
                          (freeMap F).obj aāœ = F.obj aāœ
                          @[simp]
                          theorem CategoryTheory.Cat.freeMap_map {V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] (F : V ℤq W) {Xāœ Yāœ : Paths V} (aāœ : Quiver.Path Xāœ Yāœ) :
                          (freeMap F).map aāœ = F.mapPath aāœ

                          The functor free : Quiv ℤ Cat preserves identities up to natural isomorphism and in fact up to equality.

                          Equations
                            Instances For
                              def CategoryTheory.Cat.freeMapCompIso {V₁ : Type u₁} {Vā‚‚ : Type uā‚‚} {Vā‚ƒ : Type uā‚ƒ} [Quiver V₁] [Quiver Vā‚‚] [Quiver Vā‚ƒ] (F : V₁ ℤq Vā‚‚) (G : Vā‚‚ ℤq Vā‚ƒ) :

                              The functor free : Quiv ℤ Cat preserves composition up to natural isomorphism and in fact up to equality.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Cat.freeMapCompIso_hom_app {V₁ : Type u₁} {Vā‚‚ : Type uā‚‚} {Vā‚ƒ : Type uā‚ƒ} [Quiver V₁] [Quiver Vā‚‚] [Quiver Vā‚ƒ] (F : V₁ ℤq Vā‚‚) (G : Vā‚‚ ℤq Vā‚ƒ) (X : Paths V₁) :
                                  @[simp]
                                  theorem CategoryTheory.Cat.freeMapCompIso_inv_app {V₁ : Type u₁} {Vā‚‚ : Type uā‚‚} {Vā‚ƒ : Type uā‚ƒ} [Quiver V₁] [Quiver Vā‚‚] [Quiver Vā‚ƒ] (F : V₁ ℤq Vā‚‚) (G : Vā‚‚ ℤq Vā‚ƒ) (X : Paths V₁) :
                                  theorem CategoryTheory.Cat.freeMap_comp {V₁ : Type u₁} {Vā‚‚ : Type uā‚‚} {Vā‚ƒ : Type uā‚ƒ} [Quiver V₁] [Quiver Vā‚‚] [Quiver Vā‚ƒ] (F : V₁ ℤq Vā‚‚) (G : Vā‚‚ ℤq Vā‚ƒ) :

                                  The functor sending each quiver to its path category.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Cat.free_map {Xāœ Yāœ : Quiv} (F : Xāœ ⟶ Yāœ) :
                                      def CategoryTheory.Quiv.equivOfIso {V W : Quiv} (e : V ≅ W) :
                                      ↑V ā‰ƒ ↑W

                                      An isomorphism of quivers defines an equivalence on carrier types.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Quiv.equivOfIso_symm_apply {V W : Quiv} (e : V ≅ W) (aāœ : ↑W) :
                                          (equivOfIso e).symm aāœ = e.inv.obj aāœ
                                          @[simp]
                                          theorem CategoryTheory.Quiv.equivOfIso_apply {V W : Quiv} (e : V ≅ W) (aāœ : ↑V) :
                                          (equivOfIso e) aāœ = e.hom.obj aāœ
                                          @[simp]
                                          theorem CategoryTheory.Quiv.inv_obj_hom_obj_of_iso {V W : Quiv} (e : V ≅ W) (X : ↑V) :
                                          e.inv.obj (e.hom.obj X) = X
                                          @[simp]
                                          theorem CategoryTheory.Quiv.hom_obj_inv_obj_of_iso {V W : Quiv} (e : V ≅ W) (Y : ↑W) :
                                          e.hom.obj (e.inv.obj Y) = Y
                                          theorem CategoryTheory.Quiv.hom_map_inv_map_of_iso {V W : Quiv} (e : V ≅ W) {X Y : ↑W} (f : X ⟶ Y) :
                                          e.hom.map (e.inv.map f) = Quiver.homOfEq f ⋯ ⋯
                                          theorem CategoryTheory.Quiv.inv_map_hom_map_of_iso {V W : Quiv} (e : V ≅ W) {X Y : ↑V} (f : X ⟶ Y) :
                                          e.inv.map (e.hom.map f) = Quiver.homOfEq f ⋯ ⋯
                                          def CategoryTheory.Quiv.homEquivOfIso {V W : Quiv} (e : V ≅ W) {X Y : ↑V} :
                                          (X ⟶ Y) ā‰ƒ (e.hom.obj X ⟶ e.hom.obj Y)

                                          An isomorphism of quivers defines an equivalence on hom types.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.Quiv.homEquivOfIso_symm_apply {V W : Quiv} (e : V ≅ W) {X Y : ↑V} (g : e.hom.obj X ⟶ e.hom.obj Y) :
                                              (homEquivOfIso e).symm g = Quiver.homOfEq (e.inv.map g) ⋯ ⋯
                                              @[simp]
                                              theorem CategoryTheory.Quiv.homEquivOfIso_apply {V W : Quiv} (e : V ≅ W) {X Y : ↑V} (f : X ⟶ Y) :
                                              @[simp]
                                              theorem CategoryTheory.Quiv.homOfEq_map_homOfEq {V W : Type u} [Quiver V] [Quiver W] (e : V ā‰ƒ W) (he : (X Y : V) → (X ⟶ Y) ā‰ƒ (e X ⟶ e Y)) {X Y : V} (f : X ⟶ Y) {X' Y' : V} (hX : X = X') (hY : Y = Y') {X'' Y'' : W} (hX' : e X' = X'') (hY' : e Y' = Y'') :
                                              Quiver.homOfEq ((he X' Y') (Quiver.homOfEq f hX hY)) hX' hY' = Quiver.homOfEq ((he X Y) f) ⋯ ⋯
                                              def CategoryTheory.Quiv.isoOfEquiv {V W : Type u} [Quiver V] [Quiver W] (e : V ā‰ƒ W) (he : (X Y : V) → (X ⟶ Y) ā‰ƒ (e X ⟶ e Y)) :

                                              Compatible equivalences of types and hom-types induce an isomorphism of quivers.

                                              Equations
                                                Instances For
                                                  def CategoryTheory.Quiv.lift {V : Type u} [Quiver V] {C : Type u₁} [Category.{v₁, u₁} C] (F : V ℤq C) :

                                                  Any prefunctor into a category lifts to a functor from the path category.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.Quiv.lift_map {V : Type u} [Quiver V] {C : Type u₁} [Category.{v₁, u₁} C] (F : V ℤq C) {Xāœ Yāœ : Paths V} (f : Xāœ ⟶ Yāœ) :
                                                      @[simp]
                                                      theorem CategoryTheory.Quiv.lift_obj {V : Type u} [Quiver V] {C : Type u₁} [Category.{v₁, u₁} C] (F : V ℤq C) (X : Paths V) :
                                                      (lift F).obj X = F.obj X

                                                      Naturality of pathComposition, which defines a natural transformation Quiv.forget ā‹™ Cat.free ⟶ šŸ­ _.

                                                      Naturality of Paths.of, which defines a natural transformation šŸ­ _⟶ Cat.free ā‹™ Quiv.forget.

                                                      The left triangle identity of Cat.free ⊣ Quiv.forget as a natural isomorphism

                                                      Equations
                                                        Instances For

                                                          The adjunction between forming the free category on a quiver, and forgetting a category to a quiver.

                                                          Equations
                                                            Instances For

                                                              The universal property of the path category of a quiver.

                                                              Equations
                                                                Instances For