Documentation Verification Report

TwoP

πŸ“ Source: Mathlib/CategoryTheory/Category/TwoP.lean

Statistics

MetricCount
DefinitionsTwoP, X, concreteCategory, hasForgetToBipointed, instCoeSortType, instInhabited, largeCategory, of, swap, swapEquiv, toBipointed, toTwoPointing, TwoP, pointedToTwoPFst, pointedToTwoPFstForgetCompBipointedToPointedFstAdjunction, pointedToTwoPSnd, pointedToTwoPSndForgetCompBipointedToPointedSndAdjunction
17
Theoremscoe_of, coe_toBipointed, hom_ext, hom_ext_iff, swapEquiv_counitIso_hom_app_hom_toFun, swapEquiv_counitIso_inv_app_hom_toFun, swapEquiv_functor_map_hom_toFun, swapEquiv_functor_obj_X, swapEquiv_functor_obj_toTwoPointing_toProd, swapEquiv_inverse_map_hom_toFun, swapEquiv_inverse_obj_X, swapEquiv_inverse_obj_toTwoPointing_toProd, swapEquiv_symm, swapEquiv_unitIso_hom_app_hom_toFun, swapEquiv_unitIso_inv_app_hom_toFun, swap_map, swap_obj_X, swap_obj_toTwoPointing, TwoP_swap_comp_forget_to_Bipointed, pointedToTwoPFst_comp_forget_to_bipointed, pointedToTwoPFst_comp_swap, pointedToTwoPFst_map_hom_toFun, pointedToTwoPFst_obj_X, pointedToTwoPFst_obj_toTwoPointing_toProd, pointedToTwoPSnd_comp_forget_to_bipointed, pointedToTwoPSnd_comp_swap, pointedToTwoPSnd_map_hom_toFun, pointedToTwoPSnd_obj_X, pointedToTwoPSnd_obj_toTwoPointing_toProd
29
Total46

TwoP

Definitions

NameCategoryTheorems
X πŸ“–CompOp
13 mathmath: swapEquiv_functor_map_hom_toFun, coe_of, swap_obj_toTwoPointing, swapEquiv_inverse_obj_X, swap_map, pointedToTwoPFst_obj_X, pointedToTwoPSnd_obj_X, swapEquiv_functor_obj_X, swapEquiv_functor_obj_toTwoPointing_toProd, swapEquiv_inverse_obj_toTwoPointing_toProd, swapEquiv_inverse_map_hom_toFun, coe_toBipointed, swap_obj_X
concreteCategory πŸ“–CompOp
3 mathmath: TwoP_swap_comp_forget_to_Bipointed, pointedToTwoPFst_comp_forget_to_bipointed, pointedToTwoPSnd_comp_forget_to_bipointed
hasForgetToBipointed πŸ“–CompOp
3 mathmath: TwoP_swap_comp_forget_to_Bipointed, pointedToTwoPFst_comp_forget_to_bipointed, pointedToTwoPSnd_comp_forget_to_bipointed
instCoeSortType πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
largeCategory πŸ“–CompOp
25 mathmath: pointedToTwoPFst_obj_toTwoPointing_toProd, TwoP_swap_comp_forget_to_Bipointed, swapEquiv_symm, swapEquiv_functor_map_hom_toFun, pointedToTwoPFst_comp_swap, swap_obj_toTwoPointing, swapEquiv_inverse_obj_X, swapEquiv_unitIso_hom_app_hom_toFun, swap_map, pointedToTwoPFst_obj_X, pointedToTwoPFst_map_hom_toFun, pointedToTwoPFst_comp_forget_to_bipointed, swapEquiv_counitIso_inv_app_hom_toFun, pointedToTwoPSnd_obj_X, swapEquiv_functor_obj_X, swapEquiv_functor_obj_toTwoPointing_toProd, swapEquiv_inverse_obj_toTwoPointing_toProd, swapEquiv_inverse_map_hom_toFun, pointedToTwoPSnd_comp_swap, swap_obj_X, pointedToTwoPSnd_map_hom_toFun, swapEquiv_counitIso_hom_app_hom_toFun, pointedToTwoPSnd_obj_toTwoPointing_toProd, pointedToTwoPSnd_comp_forget_to_bipointed, swapEquiv_unitIso_inv_app_hom_toFun
of πŸ“–CompOp
1 mathmath: coe_of
swap πŸ“–CompOp
8 mathmath: TwoP_swap_comp_forget_to_Bipointed, pointedToTwoPFst_comp_swap, swap_obj_toTwoPointing, swap_map, swapEquiv_counitIso_inv_app_hom_toFun, pointedToTwoPSnd_comp_swap, swap_obj_X, swapEquiv_counitIso_hom_app_hom_toFun
swapEquiv πŸ“–CompOp
11 mathmath: swapEquiv_symm, swapEquiv_functor_map_hom_toFun, swapEquiv_inverse_obj_X, swapEquiv_unitIso_hom_app_hom_toFun, swapEquiv_counitIso_inv_app_hom_toFun, swapEquiv_functor_obj_X, swapEquiv_functor_obj_toTwoPointing_toProd, swapEquiv_inverse_obj_toTwoPointing_toProd, swapEquiv_inverse_map_hom_toFun, swapEquiv_counitIso_hom_app_hom_toFun, swapEquiv_unitIso_inv_app_hom_toFun
toBipointed πŸ“–CompOp
14 mathmath: hom_ext_iff, TwoP_swap_comp_forget_to_Bipointed, swapEquiv_functor_map_hom_toFun, swapEquiv_unitIso_hom_app_hom_toFun, swap_map, pointedToTwoPFst_map_hom_toFun, pointedToTwoPFst_comp_forget_to_bipointed, swapEquiv_counitIso_inv_app_hom_toFun, swapEquiv_inverse_map_hom_toFun, coe_toBipointed, pointedToTwoPSnd_map_hom_toFun, swapEquiv_counitIso_hom_app_hom_toFun, pointedToTwoPSnd_comp_forget_to_bipointed, swapEquiv_unitIso_inv_app_hom_toFun
toTwoPointing πŸ“–CompOp
8 mathmath: pointedToTwoPFst_obj_toTwoPointing_toProd, swapEquiv_functor_map_hom_toFun, swap_obj_toTwoPointing, swap_map, swapEquiv_functor_obj_toTwoPointing_toProd, swapEquiv_inverse_obj_toTwoPointing_toProd, swapEquiv_inverse_map_hom_toFun, pointedToTwoPSnd_obj_toTwoPointing_toProd

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of πŸ“–mathematicalβ€”X
of
β€”β€”
coe_toBipointed πŸ“–mathematicalβ€”Bipointed.X
toBipointed
X
β€”β€”
hom_ext πŸ“–β€”CategoryTheory.InducedCategory.Hom.hom
TwoP
Bipointed
Bipointed.largeCategory
toBipointed
β€”β€”CategoryTheory.InducedCategory.hom_ext
hom_ext_iff πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
TwoP
Bipointed
Bipointed.largeCategory
toBipointed
β€”hom_ext
swapEquiv_counitIso_hom_app_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
toBipointed
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Functor.comp
swap
CategoryTheory.InducedCategory.Hom.hom
Bipointed
Bipointed.largeCategory
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
swapEquiv
β€”β€”
swapEquiv_counitIso_inv_app_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
toBipointed
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Functor.comp
swap
CategoryTheory.InducedCategory.Hom.hom
Bipointed
Bipointed.largeCategory
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
swapEquiv
β€”β€”
swapEquiv_functor_map_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
toBipointed
X
TwoPointing.swap
toTwoPointing
CategoryTheory.InducedCategory.Hom.hom
TwoP
Bipointed
Bipointed.largeCategory
CategoryTheory.Functor.map
largeCategory
CategoryTheory.Equivalence.functor
swapEquiv
DFunLike.coe
Bipointed.HomSubtype
Bipointed.instFunLikeHomSubtypeX
CategoryTheory.ConcreteCategory.hom
Bipointed.X
Bipointed.hasForget
β€”β€”
swapEquiv_functor_obj_X πŸ“–mathematicalβ€”X
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Equivalence.functor
swapEquiv
β€”β€”
swapEquiv_functor_obj_toTwoPointing_toProd πŸ“–mathematicalβ€”TwoPointing.toProd
X
toTwoPointing
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Equivalence.functor
swapEquiv
β€”β€”
swapEquiv_inverse_map_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
toBipointed
X
TwoPointing.swap
toTwoPointing
CategoryTheory.InducedCategory.Hom.hom
TwoP
Bipointed
Bipointed.largeCategory
CategoryTheory.Functor.map
largeCategory
CategoryTheory.Equivalence.inverse
swapEquiv
DFunLike.coe
Bipointed.HomSubtype
Bipointed.instFunLikeHomSubtypeX
CategoryTheory.ConcreteCategory.hom
Bipointed.X
Bipointed.hasForget
β€”β€”
swapEquiv_inverse_obj_X πŸ“–mathematicalβ€”X
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Equivalence.inverse
swapEquiv
β€”β€”
swapEquiv_inverse_obj_toTwoPointing_toProd πŸ“–mathematicalβ€”TwoPointing.toProd
X
toTwoPointing
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Equivalence.inverse
swapEquiv
β€”β€”
swapEquiv_symm πŸ“–mathematicalβ€”CategoryTheory.Equivalence.symm
TwoP
largeCategory
swapEquiv
β€”β€”
swapEquiv_unitIso_hom_app_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
toBipointed
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Functor.id
CategoryTheory.InducedCategory.Hom.hom
Bipointed
Bipointed.largeCategory
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
swapEquiv
β€”β€”
swapEquiv_unitIso_inv_app_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
toBipointed
CategoryTheory.Functor.obj
TwoP
largeCategory
CategoryTheory.Functor.id
CategoryTheory.InducedCategory.Hom.hom
Bipointed
Bipointed.largeCategory
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
swapEquiv
β€”β€”
swap_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
TwoP
largeCategory
swap
CategoryTheory.InducedCategory.homMk
Bipointed
Bipointed.largeCategory
toBipointed
X
TwoPointing.swap
toTwoPointing
DFunLike.coe
Bipointed.HomSubtype
Bipointed.X
Bipointed.instFunLikeHomSubtypeX
CategoryTheory.ConcreteCategory.hom
Bipointed.hasForget
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
swap_obj_X πŸ“–mathematicalβ€”X
CategoryTheory.Functor.obj
TwoP
largeCategory
swap
β€”β€”
swap_obj_toTwoPointing πŸ“–mathematicalβ€”toTwoPointing
CategoryTheory.Functor.obj
TwoP
largeCategory
swap
TwoPointing.swap
X
β€”β€”

TwoPointing

Definitions

NameCategoryTheorems
TwoP πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
TwoP πŸ“–CompData
26 mathmath: pointedToTwoPFst_obj_toTwoPointing_toProd, TwoP.hom_ext_iff, TwoP_swap_comp_forget_to_Bipointed, TwoP.swapEquiv_symm, TwoP.swapEquiv_functor_map_hom_toFun, pointedToTwoPFst_comp_swap, TwoP.swap_obj_toTwoPointing, TwoP.swapEquiv_inverse_obj_X, TwoP.swapEquiv_unitIso_hom_app_hom_toFun, TwoP.swap_map, pointedToTwoPFst_obj_X, pointedToTwoPFst_map_hom_toFun, pointedToTwoPFst_comp_forget_to_bipointed, TwoP.swapEquiv_counitIso_inv_app_hom_toFun, pointedToTwoPSnd_obj_X, TwoP.swapEquiv_functor_obj_X, TwoP.swapEquiv_functor_obj_toTwoPointing_toProd, TwoP.swapEquiv_inverse_obj_toTwoPointing_toProd, TwoP.swapEquiv_inverse_map_hom_toFun, pointedToTwoPSnd_comp_swap, TwoP.swap_obj_X, pointedToTwoPSnd_map_hom_toFun, TwoP.swapEquiv_counitIso_hom_app_hom_toFun, pointedToTwoPSnd_obj_toTwoPointing_toProd, pointedToTwoPSnd_comp_forget_to_bipointed, TwoP.swapEquiv_unitIso_inv_app_hom_toFun
pointedToTwoPFst πŸ“–CompOp
6 mathmath: pointedToTwoPFst_obj_toTwoPointing_toProd, pointedToTwoPFst_comp_swap, pointedToTwoPFst_obj_X, pointedToTwoPFst_map_hom_toFun, pointedToTwoPFst_comp_forget_to_bipointed, pointedToTwoPSnd_comp_swap
pointedToTwoPFstForgetCompBipointedToPointedFstAdjunction πŸ“–CompOpβ€”
pointedToTwoPSnd πŸ“–CompOp
6 mathmath: pointedToTwoPFst_comp_swap, pointedToTwoPSnd_obj_X, pointedToTwoPSnd_comp_swap, pointedToTwoPSnd_map_hom_toFun, pointedToTwoPSnd_obj_toTwoPointing_toProd, pointedToTwoPSnd_comp_forget_to_bipointed
pointedToTwoPSndForgetCompBipointedToPointedSndAdjunction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
TwoP_swap_comp_forget_to_Bipointed πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
TwoP
TwoP.largeCategory
Bipointed
Bipointed.largeCategory
TwoP.swap
CategoryTheory.forgetβ‚‚
Bipointed.HomSubtype
TwoP.toBipointed
Bipointed.X
Bipointed.instFunLikeHomSubtypeX
TwoP.concreteCategory
Bipointed.hasForget
TwoP.hasForgetToBipointed
Bipointed.swap
β€”β€”
pointedToTwoPFst_comp_forget_to_bipointed πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
Bipointed
Bipointed.largeCategory
pointedToTwoPFst
CategoryTheory.forgetβ‚‚
Bipointed.HomSubtype
TwoP.toBipointed
Bipointed.X
Bipointed.instFunLikeHomSubtypeX
TwoP.concreteCategory
Bipointed.hasForget
TwoP.hasForgetToBipointed
pointedToBipointedFst
β€”β€”
pointedToTwoPFst_comp_swap πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
pointedToTwoPFst
TwoP.swap
pointedToTwoPSnd
β€”β€”
pointedToTwoPFst_map_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
TwoP.toBipointed
Pointed.X
Pointed.point
CategoryTheory.InducedCategory.Hom.hom
TwoP
Bipointed
Bipointed.largeCategory
CategoryTheory.Functor.map
Pointed
Pointed.largeCategory
TwoP.largeCategory
pointedToTwoPFst
Pointed.Hom.toFun
β€”β€”
pointedToTwoPFst_obj_X πŸ“–mathematicalβ€”TwoP.X
CategoryTheory.Functor.obj
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
pointedToTwoPFst
Pointed.X
β€”β€”
pointedToTwoPFst_obj_toTwoPointing_toProd πŸ“–mathematicalβ€”TwoPointing.toProd
Pointed.X
TwoP.toTwoPointing
CategoryTheory.Functor.obj
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
pointedToTwoPFst
Pointed.point
β€”β€”
pointedToTwoPSnd_comp_forget_to_bipointed πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
Bipointed
Bipointed.largeCategory
pointedToTwoPSnd
CategoryTheory.forgetβ‚‚
Bipointed.HomSubtype
TwoP.toBipointed
Bipointed.X
Bipointed.instFunLikeHomSubtypeX
TwoP.concreteCategory
Bipointed.hasForget
TwoP.hasForgetToBipointed
pointedToBipointedSnd
β€”β€”
pointedToTwoPSnd_comp_swap πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
pointedToTwoPSnd
TwoP.swap
pointedToTwoPFst
β€”β€”
pointedToTwoPSnd_map_hom_toFun πŸ“–mathematicalβ€”Bipointed.Hom.toFun
TwoP.toBipointed
Pointed.X
Pointed.point
CategoryTheory.InducedCategory.Hom.hom
TwoP
Bipointed
Bipointed.largeCategory
CategoryTheory.Functor.map
Pointed
Pointed.largeCategory
TwoP.largeCategory
pointedToTwoPSnd
Pointed.Hom.toFun
β€”β€”
pointedToTwoPSnd_obj_X πŸ“–mathematicalβ€”TwoP.X
CategoryTheory.Functor.obj
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
pointedToTwoPSnd
Pointed.X
β€”β€”
pointedToTwoPSnd_obj_toTwoPointing_toProd πŸ“–mathematicalβ€”TwoPointing.toProd
Pointed.X
TwoP.toTwoPointing
CategoryTheory.Functor.obj
Pointed
Pointed.largeCategory
TwoP
TwoP.largeCategory
pointedToTwoPSnd
Pointed.point
β€”β€”

---

← Back to Index