The category of two-pointed types #
This defines TwoP, the category of two-pointed types.
References #
- [nLab, coalgebra of the real interval] (https://ncatlab.org/nlab/show/coalgebra+of+the+real+interval)
The category of two-pointed types.
- X : Type u
The underlying type of a two-pointed type.
- toTwoPointing : TwoPointing self.X
The two points of a bipointed type, bundled together as a pair of distinct elements.
Instances For
@[reducible, inline]
Turns a two-pointing into a two-pointed type.
Equations
Instances For
Turns a two-pointed type into a bipointed type, by forgetting that the pointed elements are distinct.
Equations
Instances For
Equations
noncomputable instance
TwoP.concreteCategory :
CategoryTheory.ConcreteCategory TwoP fun (X Y : TwoP) => X.toBipointed.HomSubtype Y.toBipointed
Equations
Equations
Swaps the pointed elements of a two-pointed type. TwoPointing.swap as a functor.
Equations
Instances For
@[simp]
theorem
TwoP.swap_map
{Xโ Yโ : TwoP}
(f : Xโ โถ Yโ)
:
swap.map f = CategoryTheory.InducedCategory.homMk
{ toFun := โ(CategoryTheory.ConcreteCategory.hom f.hom), map_fst := โฏ, map_snd := โฏ }
@[simp]
@[simp]
theorem
TwoP.swapEquiv_inverse_map_hom_toFun
{Xโ Yโ : TwoP}
(f : Xโ โถ Yโ)
(a : Xโ.toBipointed.X)
:
@[simp]
theorem
TwoP.swapEquiv_unitIso_inv_app_hom_toFun
(X : TwoP)
(a : ((CategoryTheory.Functor.id TwoP).obj X).toBipointed.X)
:
@[simp]
theorem
TwoP.swapEquiv_functor_obj_toTwoPointing_toProd
(X : TwoP)
:
(swapEquiv.functor.obj X).toTwoPointing.toProd = (X.toTwoPointing.toProd.2, X.toTwoPointing.toProd.1)
@[simp]
theorem
TwoP.swapEquiv_inverse_obj_toTwoPointing_toProd
(X : TwoP)
:
(swapEquiv.inverse.obj X).toTwoPointing.toProd = (X.toTwoPointing.toProd.2, X.toTwoPointing.toProd.1)
@[simp]
@[simp]
theorem
TwoP.swapEquiv_functor_map_hom_toFun
{Xโ Yโ : TwoP}
(f : Xโ โถ Yโ)
(a : Xโ.toBipointed.X)
:
@[simp]
theorem
TwoP.swapEquiv_unitIso_hom_app_hom_toFun
(X : TwoP)
(a : ((CategoryTheory.Functor.id TwoP).obj X).toBipointed.X)
:
@[simp]
@[simp]
@[simp]
theorem
pointedToTwoPFst_map_hom_toFun
{Xโ Yโ : Pointed}
(f : Xโ โถ Yโ)
(aโ : Option Xโ.X)
:
@[simp]
@[simp]
@[simp]
theorem
pointedToTwoPSnd_map_hom_toFun
{Xโ Yโ : Pointed}
(f : Xโ โถ Yโ)
(aโ : Option Xโ.X)
:
@[simp]
@[simp]
@[simp]
Adding a second point is left adjoint to forgetting the second point.
Equations
Instances For
Adding a first point is left adjoint to forgetting the first point.