Documentation Verification Report

Small

📁 Source: Mathlib/CategoryTheory/Comma/StructuredArrow/Small.lean

Statistics

MetricCount
DefinitionsSmall, Small, Small
3
TheoremsessentiallySmall, instSmallOfLocallySmall, small_inverseImage_proj_of_locallySmall, small_proj_preimage_of_locallySmall, essentiallySmall, instSmallOfLocallySmall, small_inverseImage_proj_of_locallySmall, small_proj_preimage_of_locallySmall
8
Total11

CategoryTheory.CostructuredArrow

Theorems

NameKindAssumesProvesValidatesDepends On
essentiallySmall 📖mathematicalCategoryTheory.EssentiallySmall
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.essentiallySmall_congr
isEquivalence_pre
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.essentiallySmall_of_small_of_locallySmall
instSmallOfLocallySmall
UnivLE.small
UnivLE.self
CategoryTheory.locallySmall_of_univLE
instSmallOfLocallySmall 📖mathematicalSmall
CategoryTheory.CostructuredArrow
small_of_surjective
small_sigma
CategoryTheory.instSmallHomOfLocallySmall
mk_surjective
small_inverseImage_proj_of_locallySmall 📖mathematicalCategoryTheory.ObjectProperty.Small
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
small_sigma
CategoryTheory.instSmallHomOfLocallySmall
small_proj_preimage_of_locallySmall 📖mathematicalCategoryTheory.ObjectProperty.Small
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
small_inverseImage_proj_of_locallySmall

CategoryTheory.FunctorToTypes

Definitions

NameCategoryTheorems
Small 📖MathDef
1 mathmath: CategoryTheory.instSmallOppositeObjFunctorTypeYoneda

CategoryTheory.Precoverage

Definitions

NameCategoryTheorems
Small 📖CompData
6 mathmath: CategoryTheory.MorphismProperty.instSmallPrecoverage, TopCat.instSmallPrecoverage, AlgebraicGeometry.Scheme.instSmallPrecoverage, Small.inf, CategoryTheory.Types.instSmallJointlySurjectivePrecoverage, instSmallComap

CategoryTheory.Precoverage.ZeroHypercover

Definitions

NameCategoryTheorems
Small 📖CompData
5 mathmath: instSmallOfSmallI₀, CategoryTheory.Precoverage.Small.zeroHypercoverSmall, instSmall, CategoryTheory.Precoverage.instSmallOfSmall, instSmallPullback₁

CategoryTheory.StructuredArrow

Theorems

NameKindAssumesProvesValidatesDepends On
essentiallySmall 📖mathematicalCategoryTheory.EssentiallySmall
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.essentiallySmall_congr
isEquivalence_pre
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.essentiallySmall_of_small_of_locallySmall
instSmallOfLocallySmall
UnivLE.small
UnivLE.self
CategoryTheory.locallySmall_of_univLE
instSmallOfLocallySmall 📖mathematicalSmall
CategoryTheory.StructuredArrow
small_of_surjective
small_sigma
CategoryTheory.instSmallHomOfLocallySmall
mk_surjective
small_inverseImage_proj_of_locallySmall 📖mathematicalCategoryTheory.ObjectProperty.Small
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
CategoryTheory.ObjectProperty.instSmallOfObjOfSmall
small_sigma
CategoryTheory.instSmallHomOfLocallySmall
small_proj_preimage_of_locallySmall 📖mathematicalCategoryTheory.ObjectProperty.Small
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
small_inverseImage_proj_of_locallySmall

---

← Back to Index