Documentation Verification Report

Endomorphism

📁 Source: Mathlib/CategoryTheory/Endomorphism.lean

Statistics

MetricCount
DefinitionsautMulEquivOfIso, inhabited, instGroup, toEnd, unitsEndEquivAut, asHom, group, inhabited, monoid, mul, mulActionLeft, mulActionRight, of, one, autMulEquivOfFullyFaithful, mulEquivEnd, mapAut, mapEnd, endEquiv
19
TheoremsAut_inv_def, Aut_mul_def, ext, ext_iff, toEnd_apply, ext, mul_def, one_def, smul_left, smul_right, autMulEquivOfFullyFaithful_apply_hom, autMulEquivOfFullyFaithful_apply_inv, autMulEquivOfFullyFaithful_symm_apply_hom, autMulEquivOfFullyFaithful_symm_apply_inv, mulEquivEnd_apply, mulEquivEnd_symm_apply, mapEnd_apply, endEquiv_apply, endEquiv_symm_apply_hom, isUnit_iff_isIso
20
Total39

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_iff_isIso 📖mathematicalIsUnit
End
Category.toCategoryStruct
End.monoid
IsIso
Units.inv_val
Units.val_inv
IsIso.inv_hom_id
IsIso.hom_inv_id

CategoryTheory.Aut

Definitions

NameCategoryTheorems
autMulEquivOfIso 📖CompOp
inhabited 📖CompOp
instGroup 📖CompOp
84 mathmath: CategoryTheory.PreGaloisCategory.mulAction_def, CategoryTheory.Iso.conjAut_apply, CategoryTheory.PreGaloisCategory.autEmbedding_injective, CategoryTheory.PreGaloisCategory.instContinuousMulAutFunctorFintypeCat, CategoryTheory.PreGaloisCategory.toAutMulEquiv_isHomeomorph, Aut_mul_def, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_hom, CategoryTheory.PreGaloisCategory.isGalois_iff_aux, CategoryTheory.Iso.conjAut_mul, CategoryTheory.PreGaloisCategory.autMapHom_apply, toEnd_apply, CategoryTheory.PreGaloisCategory.toAut_hom_app_apply, CategoryTheory.PreGaloisCategory.instFaithfulActionFintypeCatAutFunctorFunctorToAction, CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_inv, CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_hom, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Iso.trans_conjAut, CategoryTheory.PreGaloisCategory.functorToContAction_map, CategoryTheory.PreGaloisCategory.continuous_mapAut_whiskeringRight, CategoryTheory.PreGaloisCategory.instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, CategoryTheory.Functor.map_conjAut, Aut_inv_def, CategoryTheory.PreGaloisCategory.toAutHomeo_apply, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.PreGaloisCategory.exists_lift_of_continuous, CategoryTheory.PreGaloisCategory.toAutMulEquiv_apply, CategoryTheory.PreGaloisCategory.toAut_isHomeomorph, CategoryTheory.PreGaloisCategory.exists_lift_of_mono_of_isConnected, CategoryTheory.PreGaloisCategory.instIsFundamentalGroupAutFunctorFintypeCat, CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, CategoryTheory.PreGaloisCategory.toAut_surjective_of_isPretransitive, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app, CategoryTheory.PreGaloisCategory.continuousSMul_aut_fiber, Units.toAut_hom, CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isConnected, CategoryTheory.PreGaloisCategory.nhds_one_has_basis_stabilizers, CategoryTheory.PreGaloisCategory.functorToAction_map, CategoryTheory.PreGaloisCategory.autMap_apply_mul, Action.ρAut_apply_hom, CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_inv, CategoryTheory.PreGaloisCategory.instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_π, CategoryTheory.PreGaloisCategory.isGalois_iff_pretransitive, CategoryTheory.PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.PreGaloisCategory.autEmbedding_apply, CategoryTheory.PreGaloisCategory.stabilizer_normal_of_isGalois, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, Units.toAut_inv, CategoryTheory.Iso.conjAut_hom, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal, CategoryTheory.PreGaloisCategory.mulAction_naturality, CategoryTheory.PreGaloisCategory.AutGalois.π_apply, CategoryTheory.PreGaloisCategory.exists_lift_of_mono, CategoryTheory.Iso.conjAut_zpow, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, CategoryTheory.PreGaloisCategory.FiberFunctor.isPretransitive_of_isGalois, CategoryTheory.PreGaloisCategory.endEquivAutGalois_π, CategoryTheory.PreGaloisCategory.instIsTopologicalGroupAutFunctorFintypeCat, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, CategoryTheory.PreGaloisCategory.autGaloisSystem_map, CategoryTheory.PreGaloisCategory.toAut_bijective, CategoryTheory.PreGaloisCategory.isPretransitive_of_isGalois, CategoryTheory.PreGaloisCategory.AutGalois.π_surjective, CategoryTheory.PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Action.ρAut_apply_inv, CategoryTheory.Iso.conjAut_pow, TannakaDuality.FiniteGroup.equivHom_surjective, CategoryTheory.PreGaloisCategory.toAut_injective_of_non_trivial, TannakaDuality.FiniteGroup.equivHom_injective, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, CategoryTheory.PreGaloisCategory.functorToAction_full, TannakaDuality.FiniteGroup.equivHom_apply, CategoryTheory.PreGaloisCategory.toAut_continuous, CategoryTheory.PreGaloisCategory.autEmbedding_isClosedEmbedding, CategoryTheory.PreGaloisCategory.instContinuousInvAutFunctorFintypeCat, CategoryTheory.Iso.conjAut_trans, CategoryTheory.PreGaloisCategory.instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, CategoryTheory.PreGaloisCategory.autEmbedding_range_isClosed, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
toEnd 📖CompOp
3 mathmath: CategoryTheory.PreGaloisCategory.isGalois_iff_aux, toEnd_apply, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal
unitsEndEquivAut 📖CompOp
1 mathmath: toEnd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
Aut_inv_def 📖mathematicalCategoryTheory.Aut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
CategoryTheory.Iso.symm
Aut_mul_def 📖mathematicalCategoryTheory.Aut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
CategoryTheory.Iso.trans
ext 📖CategoryTheory.Iso.homCategoryTheory.Iso.ext
ext_iff 📖mathematicalCategoryTheory.Iso.homext
toEnd_apply 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.Aut
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
CategoryTheory.End.monoid
MonoidHom.instFunLike
toEnd
Units.val
MulEquiv
Units
MulOne.toMul
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
unitsEndEquivAut

CategoryTheory.End

Definitions

NameCategoryTheorems
asHom 📖CompOp
1 mathmath: ext_iff
group 📖CompOp
2 mathmath: IsFreeGroupoid.SpanningTree.endIsFree, IsFreeGroupoid.endIsFreeOfConnectedFree
inhabited 📖CompOp
monoid 📖CompOp
83 mathmath: Rep.coe_linearization_obj_ρ, Action.leftRegularTensorIso_inv_hom, CategoryTheory.TwistShiftData.z_zero_zero, Monoid.Foldl.ofFreeMonoid_apply, Action.ofMulAction_apply, CategoryTheory.Functor.commShift₂_comm, Traversable.foldlm.ofFreeMonoid_comp_of, Action.rightDual_ρ, CategoryTheory.CatCenter.smul_iso_inv_eq', Rep.linearization_single, CategoryTheory.Iso.conj_pow, CategoryTheory.CatCenter.smul_iso_inv_eq'_assoc, smul_left, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_map, Rep.ρ_hom, Action.FunctorCategoryEquivalence.functor_map_app, ContinuousCohomology.I_obj_ρ_apply, CategoryTheory.Aut.toEnd_apply, CategoryTheory.TwistShiftData.assoc, ContinuousCohomology.Iobj_ρ_apply, CategoryTheory.isUnit_iff_isIso, CategoryTheory.TwistShiftData.shift_z_app, Action.tensorUnit_ρ, FDRep.hom_hom_action_ρ, CategoryTheory.Functor.mapAction_obj_ρ_apply, Action.FintypeCat.toEndHom_apply, CategoryTheory.SingleObj.functor_map, CategoryTheory.CatCenter.smul_iso_hom_eq'_assoc, Action.FunctorCategoryEquivalence.inverse_obj_ρ_apply, Traversable.foldl.unop_ofFreeMonoid, Action.leftRegularTensorIso_hom_hom, CategoryTheory.Functor.CommShift₂.comm, CategoryTheory.TwistShiftData.z_zero_left, Action.FintypeCat.quotientToEndHom_mk, CategoryTheory.PreGaloisCategory.FibreFunctor.end_isUnit, Monoid.foldlM.ofFreeMonoid_apply, CategoryTheory.CatCenter.smul_iso_inv_eq_assoc, Action.res_map_hom, Rep.linearization_obj_ρ, Action.ρ_self_inv_apply, Rep.linearizationTrivialIso_inv_hom, Action.ρ_one, Action.ρAut_apply_hom, smul_right, Action.trivial_ρ, CategoryTheory.CatCenter.smul_iso_hom_eq_assoc, Action.Hom.comm_assoc, Traversable.foldr.ofFreeMonoid_comp_of, CategoryTheory.Functor.mapEnd_apply, Traversable.foldrm.ofFreeMonoid_comp_of, CategoryTheory.CatCenter.smul_iso_inv_eq, CategoryTheory.CatCenter.app_neg_one_zpow, Action.res_obj_ρ, Rep.ofHom_ρ, Action.FunctorCategoryEquivalence.inverse_map_hom, CategoryTheory.TwistShiftData.shiftFunctorAdd'_inv_app, CategoryTheory.CatCenter.smul_iso_hom_eq', CategoryTheory.TwistShiftData.shiftFunctorAdd'_hom_app, Traversable.foldl.ofFreeMonoid_comp_of, Action.tensor_ρ, Monoid.Foldr.ofFreeMonoid_apply, Action.isContinuous_def, CategoryTheory.Functor.mapAction_map_hom, Action.leftDual_ρ, CategoryTheory.TwistShiftData.commShift, Action.Iso.conj_ρ, Rep.linearizationTrivialIso_hom_hom, CategoryTheory.CatCenter.smul_iso_hom_eq, CategoryTheory.CommShift₂Setup.z_zero₂, CategoryTheory.CommShift₂Setup.int_ε, CategoryTheory.Functor.commShift₂_comm_assoc, Action.FunctorCategoryEquivalence.functor_obj_map, Monoid.foldrM.ofFreeMonoid_apply, Action.ρAut_apply_inv, Action.Hom.comm, Action.ρ_inv_self_apply, FDRep.hom_action_ρ, CategoryTheory.CommShift₂Setup.z_zero₁, CategoryTheory.CommShift₂Setup.hε, Action.FintypeCat.toEndHom_trivial_of_mem, CategoryTheory.CommShift₂Setup.int_z, Action.FintypeCat.ofMulAction_apply, CategoryTheory.TwistShiftData.z_zero_right
mul 📖CompOp
40 mathmath: CategoryTheory.InducedCategory.endEquiv_symm_apply_hom, CategoryTheory.InducedCategory.endEquiv_apply, FDRep.endRingEquiv_symm_comp_ρ, CategoryTheory.Iso.refl_conj, CategoryTheory.Iso.conj_pow, mul_def, ModuleCat.endRingEquiv_symm_apply_hom, CategoryTheory.CatCenter.mul_app, CategoryTheory.CatCenter.mul_app', CategoryTheory.Functor.map_conj, CategoryTheory.SingleObj.toEnd_def, CategoryTheory.CatCenter.mul_app_assoc, CategoryTheory.Functor.FullyFaithful.mulEquivEnd_symm_apply, Units.toAut_hom, CategoryTheory.HomOrthogonal.matrixDecomposition_comp, FGModuleCat.Iso.conj_eq_conj, CategoryTheory.CatCenter.mul_app'_assoc, SemimoduleCat.Iso.conj_eq_conj, CategoryTheory.Iso.symm_self_conj, Rep.Action_ρ_eq_ρ, CategoryTheory.Iso.self_symm_conj, Units.toAut_inv, CategoryTheory.Iso.conjAut_hom, ModuleCat.Iso.conj_eq_conj, CategoryTheory.Iso.conj_id, CategoryTheory.ActionCategory.stabilizerIsoEnd_apply, CategoryTheory.Iso.trans_conj, FDRep.of_ρ, CategoryTheory.Functor.FullyFaithful.mulEquivEnd_apply, CategoryTheory.CatCenter.localization_mul, CategoryTheory.Iso.conj_comp, CategoryTheory.CatCenter.instIsMulCommutative, Action.Iso.conj_ρ, ModuleCat.endRingEquiv_apply, Rep.ihom_obj_ρ, FGModuleCat.Iso.conj_hom_eq_conj, CategoryTheory.Iso.conj_apply, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi, CategoryTheory.ActionCategory.stabilizerIsoEnd_symm_apply, FDRep.endRingEquiv_comp_ρ
mulActionLeft 📖CompOp
1 mathmath: smul_left
mulActionRight 📖CompOp
1 mathmath: smul_right
of 📖CompOp
one 📖CompOp
3 mathmath: CategoryTheory.HomOrthogonal.matrixDecomposition_id, one_def, CategoryTheory.CatCenter.localization_one

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖asHom
mul_def 📖mathematicalCategoryTheory.End
mul
CategoryTheory.CategoryStruct.comp
one_def 📖mathematicalCategoryTheory.End
one
CategoryTheory.CategoryStruct.id
smul_left 📖mathematicalMulOpposite
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SemigroupAction.toSMul
Monoid.toSemigroup
MulOpposite.instMonoid
monoid
MulAction.toSemigroupAction
mulActionLeft
CategoryTheory.CategoryStruct.comp
MulOpposite.unop
smul_right 📖mathematicalCategoryTheory.End
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SemigroupAction.toSMul
Monoid.toSemigroup
monoid
MulAction.toSemigroupAction
mulActionRight
CategoryTheory.CategoryStruct.comp

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapAut 📖CompOp
1 mathmath: CategoryTheory.PreGaloisCategory.continuous_mapAut_whiskeringRight
mapEnd 📖CompOp
1 mathmath: mapEnd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
mapEnd_apply 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
obj
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
mapEnd
map

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
autMulEquivOfFullyFaithful 📖CompOp
4 mathmath: autMulEquivOfFullyFaithful_symm_apply_hom, autMulEquivOfFullyFaithful_apply_inv, autMulEquivOfFullyFaithful_apply_hom, autMulEquivOfFullyFaithful_symm_apply_inv
mulEquivEnd 📖CompOp
2 mathmath: mulEquivEnd_symm_apply, mulEquivEnd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
autMulEquivOfFullyFaithful_apply_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor.obj
DFunLike.coe
MulEquiv
CategoryTheory.Aut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
autMulEquivOfFullyFaithful
CategoryTheory.Functor.map
autMulEquivOfFullyFaithful_apply_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor.obj
DFunLike.coe
MulEquiv
CategoryTheory.Aut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
autMulEquivOfFullyFaithful
CategoryTheory.Functor.map
autMulEquivOfFullyFaithful_symm_apply_hom 📖mathematicalCategoryTheory.Iso.hom
DFunLike.coe
MulEquiv
CategoryTheory.Aut
CategoryTheory.Functor.obj
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
autMulEquivOfFullyFaithful
preimage
autMulEquivOfFullyFaithful_symm_apply_inv 📖mathematicalCategoryTheory.Iso.inv
DFunLike.coe
MulEquiv
CategoryTheory.Aut
CategoryTheory.Functor.obj
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
autMulEquivOfFullyFaithful
preimage
mulEquivEnd_apply 📖mathematicalDFunLike.coe
MulEquiv
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivEnd
CategoryTheory.Functor.map
mulEquivEnd_symm_apply 📖mathematicalDFunLike.coe
MulEquiv
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivEnd
preimage

CategoryTheory.InducedCategory

Definitions

NameCategoryTheorems
endEquiv 📖CompOp
5 mathmath: endEquiv_symm_apply_hom, endEquiv_apply, FDRep.endRingEquiv_symm_comp_ρ, FDRep.of_ρ, FDRep.endRingEquiv_comp_ρ

Theorems

NameKindAssumesProvesValidatesDepends On
endEquiv_apply 📖mathematicalDFunLike.coe
MulEquiv
CategoryTheory.End
CategoryTheory.InducedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
endEquiv
Hom.hom
endEquiv_symm_apply_hom 📖mathematicalHom.hom
DFunLike.coe
MulEquiv
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.InducedCategory
instCategory
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
endEquiv

---

← Back to Index