Documentation

Mathlib.CategoryTheory.Endomorphism

Endomorphisms #

Definition and basic properties of endomorphisms and automorphisms of an object in a category.

For each X : C, we provide CategoryTheory.End X := X โŸถ X with a monoid structure, and CategoryTheory.Aut X := X โ‰… X with a group structure.

Endomorphisms of an object in a category. Arguments order in multiplication agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

Equations
    Instances For
      instance CategoryTheory.End.mul {C : Type u} [CategoryStruct.{v, u} C] (X : C) :
      Mul (End X)

      Multiplication of endomorphisms agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

      Equations
        @[reducible, inline]
        abbrev CategoryTheory.End.of {C : Type u} [CategoryStruct.{v, u} C] {X : C} (f : X โŸถ X) :
        End X

        Assist the typechecker by expressing a morphism X โŸถ X as a term of CategoryTheory.End X.

        Equations
          Instances For
            @[reducible, inline]
            abbrev CategoryTheory.End.asHom {C : Type u} [CategoryStruct.{v, u} C] {X : C} (f : End X) :

            Assist the typechecker by expressing an endomorphism f : CategoryTheory.End X as a term of X โŸถ X.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.End.mul_def {C : Type u} [CategoryStruct.{v, u} C] {X : C} (xs ys : End X) :
                xs * ys = CategoryStruct.comp ys xs
                theorem CategoryTheory.End.ext {C : Type u} [CategoryStruct.{v, u} C] {X : C} {x y : End X} (h : x.asHom = y.asHom) :
                x = y
                instance CategoryTheory.End.monoid {C : Type u} [Category.{v, u} C] {X : C} :

                Endomorphisms of an object form a monoid

                Equations
                  instance CategoryTheory.End.group {C : Type u} [Groupoid C] (X : C) :

                  In a groupoid, endomorphisms form a group

                  Equations
                    def CategoryTheory.Aut {C : Type u} [Category.{v, u} C] (X : C) :

                    Automorphisms of an object in a category.

                    The order of arguments in multiplication agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

                    Equations
                      Instances For
                        theorem CategoryTheory.Aut.ext {C : Type u} [Category.{v, u} C] {X : C} {ฯ†โ‚ ฯ†โ‚‚ : Aut X} (h : ฯ†โ‚.hom = ฯ†โ‚‚.hom) :
                        ฯ†โ‚ = ฯ†โ‚‚
                        theorem CategoryTheory.Aut.ext_iff {C : Type u} [Category.{v, u} C] {X : C} {ฯ†โ‚ ฯ†โ‚‚ : Aut X} :
                        ฯ†โ‚ = ฯ†โ‚‚ โ†” ฯ†โ‚.hom = ฯ†โ‚‚.hom

                        Units in the monoid of endomorphisms of an object are (multiplicatively) equivalent to automorphisms of that object.

                        Equations
                          Instances For

                            The inclusion of Aut X to End X as a monoid homomorphism.

                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Aut.toEnd_apply {C : Type u} [Category.{v, u} C] (X : C) (aโœ : Aut X) :
                                (toEnd X) aโœ = โ†‘((unitsEndEquivAut X).symm aโœ)

                                Isomorphisms induce isomorphisms of the automorphism group

                                Equations
                                  Instances For
                                    def CategoryTheory.Functor.mapEnd {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) :

                                    f.map as a monoid hom between endomorphism monoids.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.Functor.mapEnd_apply {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) (aโœ : X โŸถ X) :
                                        (mapEnd X f) aโœ = f.map aโœ
                                        def CategoryTheory.Functor.mapAut {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) :

                                        f.mapIso as a group hom between automorphism groups.

                                        Equations
                                          Instances For
                                            noncomputable def CategoryTheory.Functor.FullyFaithful.mulEquivEnd {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) :

                                            mulEquivEnd as an isomorphism between endomorphism monoids.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.Functor.FullyFaithful.mulEquivEnd_symm_apply {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (fโœ : f.obj X โŸถ f.obj X) :
                                                (hf.mulEquivEnd X).symm fโœ = hf.preimage fโœ
                                                @[simp]
                                                theorem CategoryTheory.Functor.FullyFaithful.mulEquivEnd_apply {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (aโœ : X โŸถ X) :
                                                (hf.mulEquivEnd X) aโœ = f.map aโœ

                                                mulEquivAut as an isomorphism between automorphism groups.

                                                Equations
                                                  Instances For
                                                    def CategoryTheory.InducedCategory.endEquiv {C : Type u} [Category.{v, u} C] {D : Type u_1} {F : D โ†’ C} {X : InducedCategory C F} :
                                                    End X โ‰ƒ* End (F X)

                                                    The multiplicative bijection End X โ‰ƒ* End (F X) when X : InducedCategory C F.

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.InducedCategory.endEquiv_symm_apply_hom {C : Type u} [Category.{v, u} C] {D : Type u_1} {F : D โ†’ C} {X : InducedCategory C F} (f : F X โŸถ F X) :
                                                        @[simp]
                                                        theorem CategoryTheory.InducedCategory.endEquiv_apply {C : Type u} [Category.{v, u} C] {D : Type u_1} {F : D โ†’ C} {X : InducedCategory C F} (f : X โŸถ X) :