Documentation Verification Report

KanExtension

📁 Source: Mathlib/CategoryTheory/GuitartExact/KanExtension.lean

Statistics

MetricCount
DefinitionscompTwoSquare, compTwoSquare, isPointwiseLeftKanExtensionAtCompTwoSquareEquiv, isPointwiseLeftKanExtensionEquivOfGuitartExact, isPointwiseLeftKanExtensionOfCompTwoSquare, lanBaseChange
6
Theoremsnonempty_isPointwiseLeftKanExtensionAt_compTwoSquare_iff, hasLeftKanExtension, hasPointwiseLeftKanExtension, hasPointwiseLeftKanExtensionAt_iff, hasPointwiseLeftKanExtension_iff, instIsIsoFunctorLanBaseChangeOfGuitartExact, isIso_lanBaseChange_app, isIso_lanBaseChange_app_iff, lanBaseChange_app
9
Total15

CategoryTheory.Functor.LeftExtension

Definitions

NameCategoryTheorems
compTwoSquare 📖CompOp
3 mathmath: nonempty_isPointwiseLeftKanExtensionAt_compTwoSquare_iff, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.TwoSquare.lanBaseChange_app
isPointwiseLeftKanExtensionAtCompTwoSquareEquiv 📖CompOp
isPointwiseLeftKanExtensionEquivOfGuitartExact 📖CompOp
isPointwiseLeftKanExtensionOfCompTwoSquare 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_isPointwiseLeftKanExtensionAt_compTwoSquare_iff 📖mathematicalIsPointwiseLeftKanExtensionAt
CategoryTheory.Functor.comp
compTwoSquare
CategoryTheory.Functor.obj
Equiv.nonempty_congr

CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension

Definitions

NameCategoryTheorems
compTwoSquare 📖CompOp

CategoryTheory.TwoSquare

Definitions

NameCategoryTheorems
lanBaseChange 📖CompOp
4 mathmath: isIso_lanBaseChange_app, isIso_lanBaseChange_app_iff, instIsIsoFunctorLanBaseChangeOfGuitartExact, lanBaseChange_app

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtensionCategoryTheory.Functor.HasLeftKanExtension
CategoryTheory.Functor.comp
hasPointwiseLeftKanExtension
CategoryTheory.Functor.instHasLeftKanExtension
hasPointwiseLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtensionCategoryTheory.Functor.compCategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.hasPointwiseLeftKanExtension
hasPointwiseLeftKanExtensionAt_iff 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtensionAt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.Final.hasColimit_comp_iff
hasPointwiseLeftKanExtension_iff 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor.comp
hasPointwiseLeftKanExtensionAt_iff
instFinalCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact
CategoryTheory.Functor.hasPointwiseLeftKanExtensionAt_iff_of_iso
instIsIsoFunctorLanBaseChangeOfGuitartExact 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.lan
CategoryTheory.Functor.instHasLeftKanExtension
lanBaseChange
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.NatTrans.isIso_iff_isIso_app
isIso_lanBaseChange_app
isIso_lanBaseChange_app 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.lan
CategoryTheory.NatTrans.app
lanBaseChange
isIso_lanBaseChange_app_iff
CategoryTheory.Functor.instIsLeftKanExtensionObjLanAppLanUnit
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
isIso_lanBaseChange_app_iff 📖mathematicalCategoryTheory.Functor.HasLeftKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.lan
CategoryTheory.NatTrans.app
lanBaseChange
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.LeftExtension.compTwoSquare
CategoryTheory.Functor.lanUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
lanBaseChange_app
CategoryTheory.Functor.isIso_lanAdjunction_homEquiv_symm_iff
lanBaseChange_app 📖mathematicalCategoryTheory.Functor.HasLeftKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.lan
lanBaseChange
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Functor.lanAdjunction
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.LeftExtension.compTwoSquare
CategoryTheory.Functor.lanUnit

---

← Back to Index