Documentation

Mathlib.CategoryTheory.GuitartExact.KanExtension

Guitart exact squares and Kan extensions #

Given a Guitart exact square w : T ⋙ R ⟶ L ⋙ B,

     T
  C₁ ⥤ C₂
L |     | R
  v     v
  C₃ ⥤ C₄
     B

we show that an extension F' : C₄ ⥤ D of F : C₂ ⥤ D along R is a pointwise left Kan extension at B.obj X₃ iff the composition T ⋙ F' is a pointwise left Kan extension at X₃ of B ⋙ F'.

When suitable (pointwise) left Kan extensions exist, we also show that the natural transformation of functors (C₂ ⥤ D) ⥤ C₃ ⥤ D (whiskeringLeft C₁ C₂ D).obj T ⋙ L.lan ⟶ R.lan ⋙ (whiskeringLeft C₃ C₄ D).obj B induced by a Guitart exact square w is an isomorphism.

References #

@[reducible, inline]
abbrev CategoryTheory.Functor.LeftExtension.compTwoSquare {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {F : Functor C₂ D} (E : R.LeftExtension F) (w : TwoSquare T L R B) :

Given a square w : TwoSquare T L R B (consisting of a natural transformation T ⋙ R ⟶ L ⋙ B), this is the obvious map R.LeftExtension F → L.LeftExtension (T ⋙ F) obtained by the precomposition with B and the postcomposition with w.

Equations
    Instances For
      noncomputable def CategoryTheory.Functor.LeftExtension.isPointwiseLeftKanExtensionAtCompTwoSquareEquiv {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {F : Functor C₂ D} (E : R.LeftExtension F) (w : TwoSquare T L R B) (X₃ : C₃) [(w.costructuredArrowRightwards X₃).Final] :

      If w : TwoSquare T L R B is a Guitart exact square, and E is a left extension of F along R, then E is a pointwise left Kan extension of F along R at B.obj X₃ iff E.compTwoSquare w is a pointwise left Kan extension of T ⋙ F along L at X₃.

      Equations
        Instances For
          theorem CategoryTheory.Functor.LeftExtension.nonempty_isPointwiseLeftKanExtensionAt_compTwoSquare_iff {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {F : Functor C₂ D} (E : R.LeftExtension F) (w : TwoSquare T L R B) (X₃ : C₃) [(w.costructuredArrowRightwards X₃).Final] :
          noncomputable def CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.compTwoSquare {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {F : Functor C₂ D} {E : R.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) (w : TwoSquare T L R B) [w.GuitartExact] :

          If w : TwoSquare T L R B is a Guitart exact square, and E is a pointwise left Kan extension of F along R, then E.compTwoSquare w is a pointwise left Kan extension of T ⋙ F along L.

          Equations
            Instances For
              noncomputable def CategoryTheory.Functor.LeftExtension.isPointwiseLeftKanExtensionOfCompTwoSquare {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {F : Functor C₂ D} (E : R.LeftExtension F) (w : TwoSquare T L R B) [w.GuitartExact] [B.EssSurj] (h : (E.compTwoSquare w).IsPointwiseLeftKanExtension) :

              If w : TwoSquare T L R B is a Guitart exact square, with B essentially surjective, and E is a left extension of F along R, then E is a pointwise left Kan extension of F along R provided E.compTwoSquare w is a pointwise left Kan extension of T ⋙ F along L.

              Equations
                Instances For
                  noncomputable def CategoryTheory.Functor.LeftExtension.isPointwiseLeftKanExtensionEquivOfGuitartExact {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {F : Functor C₂ D} (E : R.LeftExtension F) (w : TwoSquare T L R B) [w.GuitartExact] [B.EssSurj] :

                  If w : TwoSquare T L R B is a Guitart exact square, with B essentially surjective, and E is a left extension of F along R, then E is a pointwise left Kan extension of F along R iff E.compTwoSquare w is a pointwise left Kan extension of T ⋙ F along L.

                  Equations
                    Instances For
                      theorem CategoryTheory.TwoSquare.hasPointwiseLeftKanExtensionAt_iff {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) (F : Functor C₂ D) (X₃ : C₃) [(w.costructuredArrowRightwards X₃).Final] :
                      theorem CategoryTheory.TwoSquare.hasPointwiseLeftKanExtension_iff {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [w.GuitartExact] [B.EssSurj] (F : Functor C₂ D) :
                      theorem CategoryTheory.TwoSquare.hasPointwiseLeftKanExtension {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [w.GuitartExact] (F : Functor C₂ D) [R.HasPointwiseLeftKanExtension F] :
                      theorem CategoryTheory.TwoSquare.hasLeftKanExtension {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [w.GuitartExact] (F : Functor C₂ D) [R.HasPointwiseLeftKanExtension F] :
                      noncomputable def CategoryTheory.TwoSquare.lanBaseChange {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [∀ (F : Functor C₁ D), L.HasLeftKanExtension F] [∀ (F : Functor C₂ D), R.HasLeftKanExtension F] :
                      ((Functor.whiskeringLeft C₁ C₂ D).obj T).comp L.lan R.lan.comp ((Functor.whiskeringLeft C₃ C₄ D).obj B)

                      The base change natural transformation for left Kan extensions associated to a 2-square.

                      Equations
                        Instances For
                          theorem CategoryTheory.TwoSquare.lanBaseChange_app {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [∀ (F : Functor C₁ D), L.HasLeftKanExtension F] [∀ (F : Functor C₂ D), R.HasLeftKanExtension F] (F : Functor C₂ D) :
                          theorem CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [∀ (F : Functor C₁ D), L.HasLeftKanExtension F] [∀ (F : Functor C₂ D), R.HasLeftKanExtension F] (F : Functor C₂ D) :
                          instance CategoryTheory.TwoSquare.isIso_lanBaseChange_app {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [∀ (F : Functor C₁ D), L.HasLeftKanExtension F] [∀ (F : Functor C₂ D), R.HasLeftKanExtension F] (F : Functor C₂ D) [R.HasPointwiseLeftKanExtension F] [w.GuitartExact] :
                          instance CategoryTheory.TwoSquare.instIsIsoFunctorLanBaseChangeOfGuitartExact {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} {D : Type u₅} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] [Category.{v₅, u₅} D] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} (w : TwoSquare T L R B) [∀ (F : Functor C₁ D), L.HasLeftKanExtension F] [∀ (F : Functor C₂ D), R.HasPointwiseLeftKanExtension F] [w.GuitartExact] :