Documentation Verification Report

Opposite

📁 Source: Mathlib/CategoryTheory/GuitartExact/Opposite.lean

Statistics

MetricCount
DefinitionsstructuredArrowRightwardsOpEquivalence, functor, inverse
3
TheoremsguitartExact_id', guitartExact_op_iff, instGuitartExactOppositeOp, functor_map_left_right, functor_obj_hom_right, functor_obj_left_hom, functor_obj_left_left_as, functor_obj_left_right, functor_obj_right_as, structuredArrowRightwardsOpEquivalence_counitIso, structuredArrowRightwardsOpEquivalence_functor, structuredArrowRightwardsOpEquivalence_inverse, structuredArrowRightwardsOpEquivalence_unitIso
13
Total16

CategoryTheory.TwoSquare

Definitions

NameCategoryTheorems
structuredArrowRightwardsOpEquivalence 📖CompOp
4 mathmath: structuredArrowRightwardsOpEquivalence_inverse, structuredArrowRightwardsOpEquivalence_counitIso, structuredArrowRightwardsOpEquivalence_unitIso, structuredArrowRightwardsOpEquivalence_functor

Theorems

NameKindAssumesProvesValidatesDepends On
guitartExact_id' 📖mathematicalGuitartExact
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
guitartExact_op_iff
guitartExact_id
guitartExact_op_iff 📖mathematicalGuitartExact
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
ext
vComp_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
GuitartExact.vComp
guitartExact_of_isEquivalence_of_isIso
CategoryTheory.instIsEquivalenceOppositeOpOp
CategoryTheory.IsIso.id
instGuitartExactOppositeOp
CategoryTheory.instIsEquivalenceOppositeUnopUnop
instGuitartExactOppositeOp 📖mathematicalGuitartExact
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
guitartExact_iff_isConnected_rightwards
CategoryTheory.isConnected_op_iff_isConnected
CategoryTheory.isConnected_iff_of_equivalence
instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact
structuredArrowRightwardsOpEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Opposite
StructuredArrowRightwards
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CostructuredArrowDownwards
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
structuredArrowRightwardsOpEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
structuredArrowRightwardsOpEquivalence.inverse
structuredArrowRightwardsOpEquivalence.functor
structuredArrowRightwardsOpEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
Opposite
StructuredArrowRightwards
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CostructuredArrowDownwards
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
structuredArrowRightwardsOpEquivalence
structuredArrowRightwardsOpEquivalence.functor
structuredArrowRightwardsOpEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Opposite
StructuredArrowRightwards
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CostructuredArrowDownwards
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
structuredArrowRightwardsOpEquivalence
structuredArrowRightwardsOpEquivalence.inverse
structuredArrowRightwardsOpEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Opposite
StructuredArrowRightwards
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CostructuredArrowDownwards
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowRightwards
CategoryTheory.StructuredArrow
structuredArrowDownwards
structuredArrowRightwardsOpEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id

CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence

Definitions

NameCategoryTheorems
functor 📖CompOp
8 mathmath: functor_obj_hom_right, functor_obj_left_hom, functor_obj_right_as, functor_obj_left_right, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, functor_map_left_right, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor, functor_obj_left_left_as
inverse 📖CompOp
2 mathmath: CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map_left_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.structuredArrowDownwards
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Comma.right
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.op
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.map
CategoryTheory.TwoSquare.CostructuredArrowDownwards
functor
Opposite.op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.comp
CategoryTheory.TwoSquare.natTrans
functor_obj_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
Opposite.unop
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.TwoSquare.structuredArrowDownwards
CategoryTheory.Comma.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Comma.right
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.op
CategoryTheory.TwoSquare.StructuredArrowRightwards
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.TwoSquare.CostructuredArrowDownwards
functor
Opposite.op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.comp
CategoryTheory.TwoSquare.natTrans
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Comma.mapLeft
Quiver.Hom.op
CategoryTheory.Functor.map
functor_obj_left_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.structuredArrowDownwards
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.TwoSquare.op
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.CostructuredArrowDownwards
functor
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.NatTrans.op
CategoryTheory.Functor.comp
CategoryTheory.TwoSquare.natTrans
functor_obj_left_left_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.structuredArrowDownwards
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.TwoSquare.op
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.CostructuredArrowDownwards
functor
functor_obj_left_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.structuredArrowDownwards
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.TwoSquare.op
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.CostructuredArrowDownwards
functor
Opposite.op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.comp
CategoryTheory.TwoSquare.natTrans
functor_obj_right_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.StructuredArrow
Opposite.unop
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.TwoSquare.structuredArrowDownwards
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.TwoSquare.StructuredArrowRightwards
CategoryTheory.TwoSquare.op
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.TwoSquare.costructuredArrowRightwards
CategoryTheory.TwoSquare.CostructuredArrowDownwards
functor

---

← Back to Index