The opposite of a Guitart exact square #
A 2-square is Guitart exact iff the opposite (transposed) 2-square
is Guitart exact.
def
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
Auxiliary definition for structuredArrowRightwardsOpEquivalence.
Equations
Instances For
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
(f : (w.op.StructuredArrowRightwards g)įµįµ)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
(f : (w.op.StructuredArrowRightwards g)įµįµ)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
{f f' : (w.op.StructuredArrowRightwards g)įµįµ}
(Ļ : f ā¶ f')
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
(f : (w.op.StructuredArrowRightwards g)įµįµ)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
(f : (w.op.StructuredArrowRightwards g)įµįµ)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
(f : (w.op.StructuredArrowRightwards g)įµįµ)
:
def
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.inverse
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
Auxiliary definition for structuredArrowRightwardsOpEquivalence.
Equations
Instances For
def
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
If w : TwoSquare T L R B, and g : B.op.obj Xā ā¶ R.op.obj Xā, this is
the obvious equivalence of categories between
(w.op.StructuredArrowRightwards g)įµįµ and w.CostructuredArrowDownwards g.unop.
Equations
Instances For
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
@[simp]
theorem
CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
{Xā : Cāįµįµ}
{Xā : Cāįµįµ}
(g : B.op.obj Xā ā¶ R.op.obj Xā)
:
instance
CategoryTheory.TwoSquare.instGuitartExactOppositeOp
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
[w.GuitartExact]
:
theorem
CategoryTheory.TwoSquare.guitartExact_op_iff
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
{T : Functor Cā Cā}
{L : Functor Cā Cā}
{R : Functor Cā Cā}
{B : Functor Cā Cā}
(w : TwoSquare T L R B)
:
instance
CategoryTheory.TwoSquare.guitartExact_id'
{Cā : Type uā}
{Cā : Type uā}
[Category.{vā, uā} Cā]
[Category.{vā, uā} Cā]
(F : Functor Cā Cā)
:
(mk F (Functor.id Cā) (Functor.id Cā) F (CategoryStruct.id F)).GuitartExact