Documentation

Mathlib.CategoryTheory.GuitartExact.Opposite

The opposite of a Guitart exact square #

A 2-square is Guitart exact iff the opposite (transposed) 2-square is Guitart exact.

def CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :

Auxiliary definition for structuredArrowRightwardsOpEquivalence.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) (f : (w.op.StructuredArrowRightwards g)įµ’įµ–) :
      @[simp]
      theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) (f : (w.op.StructuredArrowRightwards g)įµ’įµ–) :
      @[simp]
      theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) {f f' : (w.op.StructuredArrowRightwards g)įµ’įµ–} (φ : f ⟶ f') :
      ((functor w g).map φ).left.right = φ.unop.right.left.unop
      @[simp]
      theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) (f : (w.op.StructuredArrowRightwards g)įµ’įµ–) :
      @[simp]
      theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) (f : (w.op.StructuredArrowRightwards g)įµ’įµ–) :
      @[simp]
      theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) (f : (w.op.StructuredArrowRightwards g)įµ’įµ–) :
      def CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.inverse {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :

      Auxiliary definition for structuredArrowRightwardsOpEquivalence.

      Equations
        Instances For
          def CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :

          If w : TwoSquare T L R B, and g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚, this is the obvious equivalence of categories between (w.op.StructuredArrowRightwards g)įµ’įµ– and w.CostructuredArrowDownwards g.unop.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :
              @[simp]
              theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :
              @[simp]
              theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :
              @[simp]
              theorem CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) {Xā‚ƒ : Cā‚ƒįµ’įµ–} {Xā‚‚ : Cā‚‚įµ’įµ–} (g : B.op.obj Xā‚ƒ ⟶ R.op.obj Xā‚‚) :
              instance CategoryTheory.TwoSquare.instGuitartExactOppositeOp {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) [w.GuitartExact] :
              theorem CategoryTheory.TwoSquare.guitartExact_op_iff {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} {Cā‚ƒ : Type uā‚ƒ} {Cā‚„ : Type uā‚„} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] [Category.{vā‚ƒ, uā‚ƒ} Cā‚ƒ] [Category.{vā‚„, uā‚„} Cā‚„] {T : Functor C₁ Cā‚‚} {L : Functor C₁ Cā‚ƒ} {R : Functor Cā‚‚ Cā‚„} {B : Functor Cā‚ƒ Cā‚„} (w : TwoSquare T L R B) :
              instance CategoryTheory.TwoSquare.guitartExact_id' {C₁ : Type u₁} {Cā‚‚ : Type uā‚‚} [Category.{v₁, u₁} C₁] [Category.{vā‚‚, uā‚‚} Cā‚‚] (F : Functor C₁ Cā‚‚) :
              (mk F (Functor.id C₁) (Functor.id Cā‚‚) F (CategoryStruct.id F)).GuitartExact