Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/CategoryTheory/Idempotents/Basic.lean

Statistics

MetricCount
DefinitionsIsIdempotentComplete
1
TheoremsisIdempotentComplete, idem_of_id_sub_idem, instIsIdempotentCompleteOpposite, isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent, isIdempotentComplete_iff_idempotents_have_kernels, isIdempotentComplete_iff_of_equivalence, isIdempotentComplete_iff_opposite, isIdempotentComplete_of_abelian, isIdempotentComplete_of_isIdempotentComplete_opposite, split_iff_of_iso, split_imp_of_iso, idempotents_split
12
Total13

CategoryTheory

Definitions

NameCategoryTheorems
IsIdempotentComplete ๐Ÿ“–CompData
13 mathmath: Idempotents.instIsIdempotentCompleteCosimplicialObject, Idempotents.Equivalence.isIdempotentComplete, Idempotents.instIsIdempotentCompleteHomologicalComplex, Idempotents.isIdempotentComplete_iff_of_equivalence, Idempotents.instIsIdempotentCompleteSimplicialObject, Idempotents.instIsIdempotentCompleteKaroubi, Idempotents.isIdempotentComplete_of_isIdempotentComplete_opposite, Idempotents.isIdempotentComplete_iff_opposite, Idempotents.isIdempotentComplete_of_abelian, Idempotents.isIdempotentComplete_iff_idempotents_have_kernels, Idempotents.isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent, Idempotents.instIsIdempotentCompleteOpposite, Idempotents.functor_category_isIdempotentComplete

CategoryTheory.Idempotents

Theorems

NameKindAssumesProvesValidatesDepends On
idem_of_id_sub_idem ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.id
โ€”CategoryTheory.Preadditive.comp_sub
CategoryTheory.Category.comp_id
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Category.id_comp
sub_self
sub_zero
instIsIdempotentCompleteOpposite ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentComplete
Opposite
CategoryTheory.Category.opposite
โ€”isIdempotentComplete_iff_opposite
isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentComplete
CategoryTheory.Limits.HasEqualizer
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”CategoryTheory.IsIdempotentComplete.idempotents_split
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.Fork.condition
CategoryTheory.Limits.Fork.ฮน_ofฮน
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Limits.limit.lift_ฯ€
CategoryTheory.Limits.equalizer.condition
CategoryTheory.Limits.equalizer.lift_ฮน
isIdempotentComplete_iff_idempotents_have_kernels ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentComplete
CategoryTheory.Limits.HasKernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
โ€”isIdempotentComplete_iff_hasEqualizer_of_id_and_idempotent
sub_sub_cancel
CategoryTheory.Preadditive.hasKernel_of_hasEqualizer
idem_of_id_sub_idem
CategoryTheory.Preadditive.hasEqualizer_of_hasKernel
isIdempotentComplete_iff_of_equivalence ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentCompleteโ€”Equivalence.isIdempotentComplete
isIdempotentComplete_iff_opposite ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentComplete
Opposite
CategoryTheory.Category.opposite
โ€”isIdempotentComplete_of_isIdempotentComplete_opposite
isIdempotentComplete_iff_of_equivalence
isIdempotentComplete_of_abelian ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentCompleteโ€”isIdempotentComplete_iff_idempotents_have_kernels
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
isIdempotentComplete_of_isIdempotentComplete_opposite ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentCompleteโ€”CategoryTheory.IsIdempotentComplete.idempotents_split
CategoryTheory.op_comp
split_iff_of_iso ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.idโ€”split_imp_of_iso
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
split_imp_of_iso ๐Ÿ“–โ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
โ€”โ€”โ€”

CategoryTheory.Idempotents.Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
isIdempotentComplete ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIdempotentCompleteโ€”CategoryTheory.Idempotents.split_iff_of_iso
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
CategoryTheory.IsIdempotentComplete.idempotents_split
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_id
CategoryTheory.Equivalence.fun_inv_map

CategoryTheory.IsIdempotentComplete

Theorems

NameKindAssumesProvesValidatesDepends On
idempotents_split ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.idโ€”โ€”

---

โ† Back to Index