Idempotent complete categories #
In this file, we define the notion of idempotent complete categories (also known as Karoubian categories, or pseudoabelian in the case of preadditive categories).
Main definitions #
IsIdempotentComplete Cexpresses thatCis idempotent complete, i.e. all idempotents inCsplit. Other characterisations of idempotent completeness are given byisIdempotentComplete_iff_hasEqualizer_of_id_and_idempotentandisIdempotentComplete_iff_idempotents_have_kernels.isIdempotentComplete_of_abelianexpresses that abelian categories are idempotent complete.isIdempotentComplete_iff_ofEquivalenceexpresses that if two categoriesCandDare equivalent, thenCis idempotent complete iffDis.isIdempotentComplete_iff_oppositeexpresses thatCแตแตis idempotent complete iffCis.
References #
- [Stacks: Karoubian categories] https://stacks.math.columbia.edu/tag/09SF
A category is idempotent complete iff all idempotent endomorphisms p
split as a composition p = e โซ i with i โซ e = ๐ _
- idempotents_split (X : C) (p : X โถ X) : CategoryStruct.comp p p = p โ โ (Y : C) (i : Y โถ X) (e : X โถ Y), CategoryStruct.comp i e = CategoryStruct.id Y โง CategoryStruct.comp e i = p
A category is idempotent complete iff all idempotent endomorphisms
psplit as a compositionp = e โซ iwithi โซ e = ๐ _
Instances
A category is idempotent complete iff for all idempotent endomorphisms, the equalizer of the identity and this idempotent exists.
In a preadditive category, when p : X โถ X is idempotent,
then ๐ X - p is also idempotent.
A preadditive category is pseudoabelian iff all idempotent endomorphisms have a kernel.
An abelian category is idempotent complete.
If C and D are equivalent categories, that C is idempotent complete iff D is.