Documentation

Mathlib.CategoryTheory.Idempotents.Basic

Idempotent complete categories #

In this file, we define the notion of idempotent complete categories (also known as Karoubian categories, or pseudoabelian in the case of preadditive categories).

Main definitions #

References #

A category is idempotent complete iff all idempotent endomorphisms p split as a composition p = e โ‰ซ i with i โ‰ซ e = ๐Ÿ™ _

Instances

    A category is idempotent complete iff for all idempotent endomorphisms, the equalizer of the identity and this idempotent exists.

    In a preadditive category, when p : X โŸถ X is idempotent, then ๐Ÿ™ X - p is also idempotent.

    A preadditive category is pseudoabelian iff all idempotent endomorphisms have a kernel.

    @[instance 100]

    An abelian category is idempotent complete.

    theorem CategoryTheory.Idempotents.split_imp_of_iso {C : Type u_1} [Category.{v_1, u_1} C] {X X' : C} (ฯ† : X โ‰… X') (p : X โŸถ X) (p' : X' โŸถ X') (hpp' : CategoryStruct.comp p ฯ†.hom = CategoryStruct.comp ฯ†.hom p') (h : โˆƒ (Y : C) (i : Y โŸถ X) (e : X โŸถ Y), CategoryStruct.comp i e = CategoryStruct.id Y โˆง CategoryStruct.comp e i = p) :
    โˆƒ (Y' : C) (i' : Y' โŸถ X') (e' : X' โŸถ Y'), CategoryStruct.comp i' e' = CategoryStruct.id Y' โˆง CategoryStruct.comp e' i' = p'
    theorem CategoryTheory.Idempotents.split_iff_of_iso {C : Type u_1} [Category.{v_1, u_1} C] {X X' : C} (ฯ† : X โ‰… X') (p : X โŸถ X) (p' : X' โŸถ X') (hpp' : CategoryStruct.comp p ฯ†.hom = CategoryStruct.comp ฯ†.hom p') :
    (โˆƒ (Y : C) (i : Y โŸถ X) (e : X โŸถ Y), CategoryStruct.comp i e = CategoryStruct.id Y โˆง CategoryStruct.comp e i = p) โ†” โˆƒ (Y' : C) (i' : Y' โŸถ X') (e' : X' โŸถ Y'), CategoryStruct.comp i' e' = CategoryStruct.id Y' โˆง CategoryStruct.comp e' i' = p'

    If C and D are equivalent categories, that C is idempotent complete iff D is.