Documentation Verification Report

Connected

📁 Source: Mathlib/CategoryTheory/Limits/Constructions/Over/Connected.lean

Statistics

MetricCount
DefinitionsisLimitRaiseCone, natTransInCostructuredArrow, raiseCone, instCreatesLimitsOfShapeProjOfIsConnected, conePost, conePostIso, createsLimitsOfShapeForgetOfIsConnected, forgetCreatesConnectedLimits, isLimitConePost
9
TheoremsmapCone_raiseCone, natTransInCostructuredArrow_app, raiseCone_pt, raiseCone_π_app, hasLimitsOfShape_of_isConnected, instPreservesLimitsOfShapeProjOfIsConnected, conePostIso_hom_app_hom, conePostIso_inv_app_hom, conePost_map_hom, conePost_obj_pt, conePost_obj_π_app, forgetPreservesConnectedLimits, hasLimitsOfShape_of_isConnected, preservesLimitsOfShape_forget_of_isConnected
14
Total23

CategoryTheory.CostructuredArrow

Definitions

NameCategoryTheorems
instCreatesLimitsOfShapeProjOfIsConnected 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasLimitsOfShape_of_isConnected 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.hasLimit_of_created
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instPreservesLimitsOfShapeProjOfIsConnected 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
proj
CategoryTheory.Functor.mapCone_π_app
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.IsConnected.is_nonempty
CreatesConnected.raiseCone_π_app
proj_map
homMk_left
CategoryTheory.Category.assoc
CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsLimit.uniq
CategoryTheory.Functor.map_injective
proj_faithful

CategoryTheory.CostructuredArrow.CreatesConnected

Definitions

NameCategoryTheorems
isLimitRaiseCone 📖CompOp
natTransInCostructuredArrow 📖CompOp
1 mathmath: natTransInCostructuredArrow_app
raiseCone 📖CompOp
3 mathmath: mapCone_raiseCone, raiseCone_pt, raiseCone_π_app

Theorems

NameKindAssumesProvesValidatesDepends On
mapCone_raiseCone 📖mathematicalCategoryTheory.Functor.mapCone
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
raiseCone
natTransInCostructuredArrow_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
natTransInCostructuredArrow
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
raiseCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
raiseCone
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
Classical.arbitrary
CategoryTheory.IsConnected.is_nonempty
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
raiseCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
Classical.arbitrary
CategoryTheory.IsConnected.is_nonempty
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.π
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
raiseCone
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.IsConnected.is_nonempty

CategoryTheory.Over

Definitions

NameCategoryTheorems
conePost 📖CompOp
5 mathmath: conePost_obj_π_app, conePostIso_hom_app_hom, conePost_map_hom, conePostIso_inv_app_hom, conePost_obj_pt
conePostIso 📖CompOp
2 mathmath: conePostIso_hom_app_hom, conePostIso_inv_app_hom
createsLimitsOfShapeForgetOfIsConnected 📖CompOp
forgetCreatesConnectedLimits 📖CompOp
isLimitConePost 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
conePostIso_hom_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
forget
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
conePost
CategoryTheory.Limits.Cones.functoriality
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cones.whiskering
conePostIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
conePostIso_inv_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
forget
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
conePost
CategoryTheory.Limits.Cones.functoriality
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.Cones.whiskering
conePostIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
conePost_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
conePost
conePost_obj_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
conePost
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
conePost_obj_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
post
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
conePost
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
forgetPreservesConnectedLimits 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
preservesLimitsOfShape_forget_of_isConnected
hasLimitsOfShape_of_isConnected 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.hasLimit_of_created
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
preservesLimitsOfShape_forget_of_isConnected 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
CategoryTheory.CostructuredArrow.instPreservesLimitsOfShapeProjOfIsConnected

---

← Back to Index