Documentation

Mathlib.CategoryTheory.Limits.Constructions.Over.Connected

Connected limits in the over category #

We show that the projection CostructuredArrow K B ⥤ C creates and preserves connected limits, without assuming that C has any limits. In particular, CostructuredArrow K B has any connected limit which C has.

From this we deduce the corresponding results for the over category.

(Implementation) Given a diagram in CostructuredArrow K B, produce a natural transformation from the diagram legs to the specific object.

Equations
    Instances For

      (Implementation) Given a cone in the base category, raise it to a cone in CostructuredArrow K B. Note this is where the connected assumption is used.

      Equations
        Instances For

          (Implementation) Show that the raised cone is a limit.

          Equations
            Instances For

              The projection from CostructuredArrow K B to C creates any connected limit.

              Equations

                The forgetful functor from CostructuredArrow K B preserves any connected limit.

                The over category has any connected limit which the original category has.

                The forgetful functor from the over category creates any connected limit.

                Equations
                  @[deprecated CategoryTheory.Over.createsLimitsOfShapeForgetOfIsConnected (since := "2025-09-29")]

                  Alias of CategoryTheory.Over.createsLimitsOfShapeForgetOfIsConnected.


                  The forgetful functor from the over category creates any connected limit.

                  Equations
                    Instances For

                      The forgetful functor from the over category preserves any connected limit.

                      @[deprecated CategoryTheory.Over.preservesLimitsOfShape_forget_of_isConnected (since := "2025-09-29")]

                      Alias of CategoryTheory.Over.preservesLimitsOfShape_forget_of_isConnected.


                      The forgetful functor from the over category preserves any connected limit.

                      The over category has any connected limit which the original category has.

                      The functor taking a cone over F to a cone over Over.post F : Over i ⥤ Over (F.obj i). This takes limit cones to limit cones when J is cofiltered. See isLimitConePost

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Over.conePost_map_hom {J : Type u'} [Category.{v', u'} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) (i : J) {X✝ Y✝ : Limits.Cone F} (f : X✝ Y✝) :
                          ((conePost F i).map f).hom = homMk f.hom
                          @[simp]
                          theorem CategoryTheory.Over.conePost_obj_pt {J : Type u'} [Category.{v', u'} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) (i : J) (c : Limits.Cone F) :
                          ((conePost F i).obj c).pt = mk (c.π.app i)
                          @[simp]
                          theorem CategoryTheory.Over.conePost_obj_π_app {J : Type u'} [Category.{v', u'} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) (i : J) (c : Limits.Cone F) (X : Over i) :
                          ((conePost F i).obj c).π.app X = homMk (c.π.app X.left)

                          conePost is compatible with the forgetful functors on over categories.

                          Equations
                            Instances For
                              noncomputable def CategoryTheory.Over.isLimitConePost {J : Type u'} [Category.{v', u'} J] {C : Type u} [Category.{v, u} C] [IsCofilteredOrEmpty J] {F : Functor J C} {c : Limits.Cone F} (i : J) (hc : Limits.IsLimit c) :

                              The functor taking a cone over F to a cone over Over.post F : Over i ⥤ Over (F.obj i) preserves limit cones

                              Equations
                                Instances For