Documentation Verification Report

ExactFunctor

πŸ“ Source: Mathlib/CategoryTheory/Limits/ExactFunctor.lean

Statistics

MetricCount
DefinitionsExactFunctor, forget, of, whiskeringLeft, whiskeringRight, forget, fullyFaithful, of, ofExact, whiskeringLeft, whiskeringRight, RightExactFunctor, forget, fullyFaithful, of, ofExact, whiskeringLeft, whiskeringRight, exactFunctor, leftExactFunctor, rightExactFunctor, Β«term_β₯€α΅£_Β», Β«term_β₯€β‚‘_Β», Β«term_β₯€β‚—_Β»
24
Theoremsforget_map, forget_obj, forget_obj_of, of_fst, whiskeringLeft_map_app, whiskeringLeft_obj_map, whiskeringLeft_obj_obj_obj, whiskeringRight_map_app, whiskeringRight_obj_map, whiskeringRight_obj_obj_obj, forget_map, forget_obj, forget_obj_of, ofExact_map, ofExact_map_hom, ofExact_obj, of_fst, whiskeringLeft_map_app, whiskeringLeft_obj_map, whiskeringLeft_obj_obj_obj, whiskeringRight_map_app, whiskeringRight_obj_map, whiskeringRight_obj_obj_obj, forget_map, forget_obj, forget_obj_of, ofExact_map, ofExact_map_hom, ofExact_obj, of_fst, whiskeringLeft_map_app, whiskeringLeft_obj_map, whiskeringLeft_obj_obj_obj, whiskeringRight_map_app, whiskeringRight_obj_map, whiskeringRight_obj_obj_obj, exactFunctor_iff, exactFunctor_le_leftExactFunctor, exactFunctor_le_rightExactFunctor, instPreservesFiniteColimitsObjFunctorExactFunctor, instPreservesFiniteColimitsObjFunctorRightExactFunctor, instPreservesFiniteLimitsObjFunctorExactFunctor, instPreservesFiniteLimitsObjFunctorLeftExactFunctor, leftExactFunctor_iff, rightExactFunctor_iff
45
Total69

CategoryTheory

Definitions

NameCategoryTheorems
ExactFunctor πŸ“–CompOp
18 mathmath: LeftExactFunctor.ofExact_map, ExactFunctor.forget_map, AdditiveFunctor.ofExact_obj_fst, ExactFunctor.forget_obj, RightExactFunctor.ofExact_map_hom, AdditiveFunctor.ofExact_map, ExactFunctor.whiskeringLeft_map_app, LeftExactFunctor.ofExact_map_hom, ExactFunctor.whiskeringLeft_obj_obj_obj, ExactFunctor.whiskeringLeft_obj_map, ExactFunctor.whiskeringRight_obj_obj_obj, RightExactFunctor.ofExact_map, LeftExactFunctor.ofExact_obj, ExactFunctor.whiskeringRight_map_app, RightExactFunctor.ofExact_obj, ExactFunctor.forget_obj_of, AdditiveFunctor.ofExact_map_hom, ExactFunctor.whiskeringRight_obj_map
RightExactFunctor πŸ“–CompOp
15 mathmath: RightExactFunctor.whiskeringRight_obj_obj_obj, RightExactFunctor.whiskeringLeft_map_app, RightExactFunctor.whiskeringRight_map_app, RightExactFunctor.ofExact_map_hom, AdditiveFunctor.ofRightExact_map, RightExactFunctor.forget_map, RightExactFunctor.ofExact_map, AdditiveFunctor.ofRightExact_obj_fst, RightExactFunctor.ofExact_obj, RightExactFunctor.whiskeringLeft_obj_obj_obj, RightExactFunctor.forget_obj_of, RightExactFunctor.whiskeringLeft_obj_map, RightExactFunctor.forget_obj, AdditiveFunctor.ofRightExact_map_hom, RightExactFunctor.whiskeringRight_obj_map
exactFunctor πŸ“–CompOp
25 mathmath: LeftExactFunctor.ofExact_map, ExactFunctor.forget_map, exactFunctor_le_additiveFunctor, AdditiveFunctor.ofExact_obj_fst, ExactFunctor.forget_obj, RightExactFunctor.ofExact_map_hom, AdditiveFunctor.ofExact_map, ExactFunctor.whiskeringLeft_map_app, LeftExactFunctor.ofExact_map_hom, ExactFunctor.whiskeringLeft_obj_obj_obj, ExactFunctor.whiskeringLeft_obj_map, ExactFunctor.whiskeringRight_obj_obj_obj, RightExactFunctor.ofExact_map, LeftExactFunctor.ofExact_obj, ExactFunctor.whiskeringRight_map_app, exactFunctor_le_leftExactFunctor, RightExactFunctor.ofExact_obj, ExactFunctor.forget_obj_of, ExactFunctor.of_fst, instPreservesFiniteColimitsObjFunctorExactFunctor, AdditiveFunctor.ofExact_map_hom, exactFunctor_iff, ExactFunctor.whiskeringRight_obj_map, exactFunctor_le_rightExactFunctor, instPreservesFiniteLimitsObjFunctorExactFunctor
leftExactFunctor πŸ“–CompOp
26 mathmath: LeftExactFunctor.ofExact_map, LeftExactFunctor.forget_map, LeftExactFunctor.forget_obj, Functor.mapGrpFunctor_obj, Functor.mapCommGrpFunctor_obj, AdditiveFunctor.ofLeftExact_map, LeftExactFunctor.whiskeringRight_map_app, LeftExactFunctor.whiskeringRight_obj_map, LeftExactFunctor.whiskeringLeft_map_app, LeftExactFunctor.whiskeringLeft_obj_obj_obj, leftExactFunctor_le_additiveFunctor, LeftExactFunctor.ofExact_map_hom, Functor.mapGrpFunctor_map_app, AdditiveFunctor.ofLeftExact_obj_fst, instPreservesFiniteLimitsObjFunctorLeftExactFunctor, LeftExactFunctor.ofExact_obj, AddCommGrpCat.leftExactFunctorForgetEquivalence.instPreservesFiniteLimitsObjLeftExactFunctorTypeFunctorInverseAux, leftExactFunctor_iff, LeftExactFunctor.of_fst, exactFunctor_le_leftExactFunctor, Functor.mapCommGrpFunctor_map, RightExactFunctor.ofExact_obj, LeftExactFunctor.whiskeringLeft_obj_map, AdditiveFunctor.ofLeftExact_map_hom, LeftExactFunctor.whiskeringRight_obj_obj_obj, LeftExactFunctor.forget_obj_of
rightExactFunctor πŸ“–CompOp
21 mathmath: RightExactFunctor.whiskeringRight_obj_obj_obj, RightExactFunctor.whiskeringLeft_map_app, RightExactFunctor.whiskeringRight_map_app, RightExactFunctor.ofExact_map_hom, AdditiveFunctor.ofRightExact_map, RightExactFunctor.forget_map, RightExactFunctor.ofExact_map, LeftExactFunctor.ofExact_obj, AdditiveFunctor.ofRightExact_obj_fst, RightExactFunctor.of_fst, instPreservesFiniteColimitsObjFunctorRightExactFunctor, RightExactFunctor.ofExact_obj, rightExactFunctor_iff, RightExactFunctor.whiskeringLeft_obj_obj_obj, RightExactFunctor.forget_obj_of, RightExactFunctor.whiskeringLeft_obj_map, rightExactFunctor_le_additiveFunctor, exactFunctor_le_rightExactFunctor, RightExactFunctor.forget_obj, AdditiveFunctor.ofRightExact_map_hom, RightExactFunctor.whiskeringRight_obj_map
Β«term_β₯€α΅£_Β» πŸ“–CompOpβ€”
Β«term_β₯€β‚‘_Β» πŸ“–CompOpβ€”
Β«term_β₯€β‚—_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exactFunctor_iff πŸ“–mathematicalβ€”exactFunctor
Limits.PreservesFiniteLimits
Limits.PreservesFiniteColimits
β€”β€”
exactFunctor_le_leftExactFunctor πŸ“–mathematicalβ€”ObjectProperty
Functor
Category.toCategoryStruct
Functor.category
Pi.hasLe
Prop.le
exactFunctor
leftExactFunctor
β€”β€”
exactFunctor_le_rightExactFunctor πŸ“–mathematicalβ€”ObjectProperty
Functor
Category.toCategoryStruct
Functor.category
Pi.hasLe
Prop.le
exactFunctor
rightExactFunctor
β€”β€”
instPreservesFiniteColimitsObjFunctorExactFunctor πŸ“–mathematicalβ€”Limits.PreservesFiniteColimits
ObjectProperty.FullSubcategory.obj
Functor
Functor.category
exactFunctor
β€”ObjectProperty.FullSubcategory.property
instPreservesFiniteColimitsObjFunctorRightExactFunctor πŸ“–mathematicalβ€”Limits.PreservesFiniteColimits
ObjectProperty.FullSubcategory.obj
Functor
Functor.category
rightExactFunctor
β€”ObjectProperty.FullSubcategory.property
instPreservesFiniteLimitsObjFunctorExactFunctor πŸ“–mathematicalβ€”Limits.PreservesFiniteLimits
ObjectProperty.FullSubcategory.obj
Functor
Functor.category
exactFunctor
β€”ObjectProperty.FullSubcategory.property
instPreservesFiniteLimitsObjFunctorLeftExactFunctor πŸ“–mathematicalβ€”Limits.PreservesFiniteLimits
ObjectProperty.FullSubcategory.obj
Functor
Functor.category
leftExactFunctor
β€”ObjectProperty.FullSubcategory.property
leftExactFunctor_iff πŸ“–mathematicalβ€”leftExactFunctor
Limits.PreservesFiniteLimits
β€”β€”
rightExactFunctor_iff πŸ“–mathematicalβ€”rightExactFunctor
Limits.PreservesFiniteColimits
β€”β€”

CategoryTheory.ExactFunctor

Definitions

NameCategoryTheorems
forget πŸ“–CompOp
5 mathmath: forget_map, forget_obj, whiskeringLeft_map_app, whiskeringRight_map_app, forget_obj_of
of πŸ“–CompOp
2 mathmath: forget_obj_of, of_fst
whiskeringLeft πŸ“–CompOp
3 mathmath: whiskeringLeft_map_app, whiskeringLeft_obj_obj_obj, whiskeringLeft_obj_map
whiskeringRight πŸ“–CompOp
3 mathmath: whiskeringRight_obj_obj_obj, whiskeringRight_map_app, whiskeringRight_obj_map

Theorems

NameKindAssumesProvesValidatesDepends On
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
forget
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
forget
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj_of πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
forget
of
β€”β€”
of_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
of
β€”β€”
whiskeringLeft_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.ObjectProperty.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
whiskeringLeft
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
whiskeringLeft_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
whiskeringLeft
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.comp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.whiskerLeft
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
whiskeringLeft_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.FullSubcategory
whiskeringLeft
CategoryTheory.Functor.comp
β€”β€”
whiskeringRight_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.ObjectProperty.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
whiskeringRight
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
whiskeringRight_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
whiskeringRight
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.comp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.whiskerRight
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
whiskeringRight_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.FullSubcategory
whiskeringRight
CategoryTheory.Functor.comp
β€”β€”

CategoryTheory.LeftExactFunctor

Definitions

NameCategoryTheorems
forget πŸ“–CompOp
5 mathmath: forget_map, forget_obj, whiskeringRight_map_app, whiskeringLeft_map_app, forget_obj_of
fullyFaithful πŸ“–CompOpβ€”
of πŸ“–CompOp
2 mathmath: of_fst, forget_obj_of
ofExact πŸ“–CompOp
3 mathmath: ofExact_map, ofExact_map_hom, ofExact_obj
whiskeringLeft πŸ“–CompOp
3 mathmath: whiskeringLeft_map_app, whiskeringLeft_obj_obj_obj, whiskeringLeft_obj_map
whiskeringRight πŸ“–CompOp
3 mathmath: whiskeringRight_map_app, whiskeringRight_obj_map, whiskeringRight_obj_obj_obj

Theorems

NameKindAssumesProvesValidatesDepends On
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
forget
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
forget
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj_of πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
forget
of
β€”β€”
ofExact_map πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.LeftExactFunctor
ofExact
CategoryTheory.Functor.map
β€”ofExact_map_hom
ofExact_map_hom πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.LeftExactFunctor
ofExact
CategoryTheory.Functor.map
β€”β€”
ofExact_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.LeftExactFunctor
CategoryTheory.leftExactFunctor
ofExact
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.property
β€”β€”
of_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
of
β€”β€”
whiskeringLeft_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
whiskeringLeft
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
whiskeringLeft_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
whiskeringLeft
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.comp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.whiskerLeft
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
whiskeringLeft_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.FullSubcategory
whiskeringLeft
CategoryTheory.Functor.comp
β€”β€”
whiskeringRight_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
whiskeringRight
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
whiskeringRight_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
whiskeringRight
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.comp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.whiskerRight
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
whiskeringRight_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.leftExactFunctor
CategoryTheory.Functor.obj
CategoryTheory.LeftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.FullSubcategory
whiskeringRight
CategoryTheory.Functor.comp
β€”β€”

CategoryTheory.RightExactFunctor

Definitions

NameCategoryTheorems
forget πŸ“–CompOp
5 mathmath: whiskeringLeft_map_app, whiskeringRight_map_app, forget_map, forget_obj_of, forget_obj
fullyFaithful πŸ“–CompOpβ€”
of πŸ“–CompOp
2 mathmath: of_fst, forget_obj_of
ofExact πŸ“–CompOp
3 mathmath: ofExact_map_hom, ofExact_map, ofExact_obj
whiskeringLeft πŸ“–CompOp
3 mathmath: whiskeringLeft_map_app, whiskeringLeft_obj_obj_obj, whiskeringLeft_obj_map
whiskeringRight πŸ“–CompOp
3 mathmath: whiskeringRight_obj_obj_obj, whiskeringRight_map_app, whiskeringRight_obj_map

Theorems

NameKindAssumesProvesValidatesDepends On
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
forget
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
forget
CategoryTheory.ObjectProperty.FullSubcategory.obj
β€”β€”
forget_obj_of πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
forget
of
β€”β€”
ofExact_map πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.RightExactFunctor
ofExact
CategoryTheory.Functor.map
β€”ofExact_map_hom
ofExact_map_hom πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.exactFunctor
CategoryTheory.RightExactFunctor
ofExact
CategoryTheory.Functor.map
β€”β€”
ofExact_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.exactFunctor
CategoryTheory.RightExactFunctor
CategoryTheory.rightExactFunctor
ofExact
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.leftExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.property
β€”β€”
of_fst πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
of
β€”β€”
whiskeringLeft_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
whiskeringLeft
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
whiskeringLeft_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
whiskeringLeft
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.comp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.whiskerLeft
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
whiskeringLeft_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.FullSubcategory
whiskeringLeft
CategoryTheory.Functor.comp
β€”β€”
whiskeringRight_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.lift
CategoryTheory.Functor.comp
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.map
whiskeringRight
CategoryTheory.ObjectProperty.homMk
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
β€”β€”
whiskeringRight_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
whiskeringRight
CategoryTheory.ObjectProperty.homMk
CategoryTheory.Functor.comp
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.whiskerRight
CategoryTheory.InducedCategory.Hom.hom
β€”β€”
whiskeringRight_obj_obj_obj πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.rightExactFunctor
CategoryTheory.Functor.obj
CategoryTheory.RightExactFunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.FullSubcategory
whiskeringRight
CategoryTheory.Functor.comp
β€”β€”

---

← Back to Index