Documentation

Mathlib.CategoryTheory.Limits.ExactFunctor

Bundled exact functors #

We say that a functor F is left exact if it preserves finite limits, it is right exact if it preserves finite colimits, and it is exact if it is both left exact and right exact.

In this file, we define the categories of bundled left exact, right exact and exact functors.

Left-exactness, as a property of objects in C ⥤ D.

Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.LeftExactFunctor (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] :
      Type (max (max (max u₁ u₂) v₁) v₂)

      Bundled left-exact functors.

      Equations
        Instances For

          C ⥤ₗ D denotes left exact functors C ⥤ D

          Equations
            Instances For
              @[reducible, inline]

              A left exact functor is in particular a functor.

              Equations
                Instances For
                  @[reducible, inline]

                  The inclusion of left exact functors into functors is fully faithful.

                  Equations
                    Instances For

                      Right-exactness, as a property of objects in C ⥤ D.

                      Equations
                        Instances For
                          @[reducible, inline]
                          abbrev CategoryTheory.RightExactFunctor (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] :
                          Type (max (max (max u₁ u₂) v₁) v₂)

                          Bundled right-exact functors.

                          Equations
                            Instances For

                              C ⥤ᵣ D denotes right exact functors C ⥤ D

                              Equations
                                Instances For
                                  @[reducible, inline]

                                  A right exact functor is in particular a functor.

                                  Equations
                                    Instances For
                                      @[reducible, inline]

                                      The inclusion of right exact functors into functors is fully faithful.

                                      Equations
                                        Instances For

                                          Exactness, as a property of objects in C ⥤ D.

                                          Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev CategoryTheory.ExactFunctor (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] :
                                              Type (max (max (max u₁ u₂) v₁) v₂)

                                              Bundled exact functors.

                                              Equations
                                                Instances For

                                                  C ⥤ₑ D denotes exact functors C ⥤ D

                                                  Equations
                                                    Instances For
                                                      @[reducible, inline]

                                                      An exact functor is in particular a functor.

                                                      Equations
                                                        Instances For
                                                          @[reducible, inline]

                                                          Turn an exact functor into a left exact functor.

                                                          Equations
                                                            Instances For
                                                              @[reducible, inline]

                                                              Turn an exact functor into a left exact functor.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem CategoryTheory.LeftExactFunctor.ofExact_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : C ⥤ₑ D) :
                                                                  (ofExact C D).obj F = { obj := F.obj, property := }
                                                                  @[simp]
                                                                  theorem CategoryTheory.RightExactFunctor.ofExact_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : C ⥤ₑ D) :
                                                                  (ofExact C D).obj F = { obj := F.obj, property := }
                                                                  @[simp]
                                                                  theorem CategoryTheory.LeftExactFunctor.ofExact_map_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ₑ D} (α : F G) :
                                                                  ((ofExact C D).map α).hom = α.hom
                                                                  @[simp]
                                                                  theorem CategoryTheory.RightExactFunctor.ofExact_map_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ₑ D} (α : F G) :
                                                                  ((ofExact C D).map α).hom = α.hom
                                                                  @[simp]
                                                                  theorem CategoryTheory.LeftExactFunctor.forget_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ₗ D} (α : F G) :
                                                                  (forget C D).map α = α.hom
                                                                  @[simp]
                                                                  theorem CategoryTheory.RightExactFunctor.forget_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ᵣ D} (α : F G) :
                                                                  (forget C D).map α = α.hom
                                                                  @[simp]
                                                                  theorem CategoryTheory.ExactFunctor.forget_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ₑ D} (α : F G) :
                                                                  (forget C D).map α = α.hom

                                                                  Turn a left exact functor into an object of the category LeftExactFunctor C D.

                                                                  Equations
                                                                    Instances For

                                                                      Turn a right exact functor into an object of the category RightExactFunctor C D.

                                                                      Equations
                                                                        Instances For

                                                                          Turn an exact functor into an object of the category ExactFunctor C D.

                                                                          Equations
                                                                            Instances For

                                                                              Whiskering a left exact functor by a left exact functor yields a left exact functor.

                                                                              Equations
                                                                                Instances For

                                                                                  Whiskering a left exact functor by a left exact functor yields a left exact functor.

                                                                                  Equations
                                                                                    Instances For

                                                                                      Whiskering a right exact functor by a right exact functor yields a right exact functor.

                                                                                      Equations
                                                                                        Instances For

                                                                                          Whiskering a right exact functor by a right exact functor yields a right exact functor.

                                                                                          Equations
                                                                                            Instances For

                                                                                              Whiskering an exact functor by an exact functor yields an exact functor.

                                                                                              Equations
                                                                                                Instances For
                                                                                                  @[simp]
                                                                                                  theorem CategoryTheory.ExactFunctor.whiskeringLeft_obj_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] (F : C ⥤ₑ D) {X✝ Y✝ : D ⥤ₑ E} (f : X✝ Y✝) :

                                                                                                  Whiskering an exact functor by an exact functor yields an exact functor.

                                                                                                  Equations
                                                                                                    Instances For
                                                                                                      @[deprecated CategoryTheory.LeftExactFunctor.ofExact_map_hom (since := "2025-12-18")]
                                                                                                      theorem CategoryTheory.LeftExactFunctor.ofExact_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ₑ D} (α : F G) :
                                                                                                      ((ofExact C D).map α).hom = α.hom

                                                                                                      Alias of CategoryTheory.LeftExactFunctor.ofExact_map_hom.

                                                                                                      @[deprecated CategoryTheory.RightExactFunctor.ofExact_map_hom (since := "2025-12-18")]
                                                                                                      theorem CategoryTheory.RightExactFunctor.ofExact_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : C ⥤ₑ D} (α : F G) :
                                                                                                      ((ofExact C D).map α).hom = α.hom

                                                                                                      Alias of CategoryTheory.RightExactFunctor.ofExact_map_hom.