Documentation Verification Report

LocallySmall

📁 Source: Mathlib/CategoryTheory/Limits/Indization/LocallySmall.lean

Statistics

MetricCount
DefinitionscolimitYonedaHomEquiv
1
TheoremscolimitYonedaHomEquiv_π_apply, instLocallySmallFullSubcategoryFunctorOppositeTypeIsIndObject, instSmallHomFunctorOppositeTypeColimitCompYoneda
3
Total4

CategoryTheory

Definitions

NameCategoryTheorems
colimitYonedaHomEquiv 📖CompOp
1 mathmath: colimitYonedaHomEquiv_π_apply

Theorems

NameKindAssumesProvesValidatesDepends On
colimitYonedaHomEquiv_π_apply 📖mathematicalLimits.limit.π
Opposite
Category.opposite
types
Functor.comp
Functor.op
Limits.hasLimitOfHasLimitsOfShape
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Limits.colimit
yoneda
Limits.functorCategoryHasColimit
Limits.hasColimitOfHasColimitsOfShape
Functor.obj
Functor.flip
Limits.limit
EquivLike.toFunLike
Equiv.instEquivLike
colimitYonedaHomEquiv
NatTrans.app
Opposite.op
Opposite.unop
Limits.colimit.ι
CategoryStruct.id
Limits.functorCategoryHasColimit
Limits.hasColimitOfHasColimitsOfShape
Limits.hasLimitOfHasLimitsOfShape
Iso.trans_assoc
Limits.instHasLimitCompOfPreservesLimit
Limits.PreservesLimitsOfShape.preservesLimit
Limits.PreservesLimitsOfSize.preservesLimitsOfShape
Limits.Types.instPreservesLimitsOfSizeUliftFunctor
preservesLimitIso_inv_π
types_comp_apply
Limits.HasLimit.isoOfNatIso_hom_π
Limits.colimitYonedaHomIsoLimitOp_π_apply
instLocallySmallFullSubcategoryFunctorOppositeTypeIsIndObject 📖mathematicalLocallySmall
ObjectProperty.FullSubcategory
Functor
Opposite
Category.opposite
types
Functor.category
Limits.IsIndObject
ObjectProperty.FullSubcategory.category
ObjectProperty.FullSubcategory.property
Limits.functorCategoryHasColimit
Limits.Types.hasColimit
UnivLE.small
UnivLE.self
small_map
instSmallHomFunctorOppositeTypeColimitCompYoneda
Limits.Types.hasColimitsOfShape
Limits.Types.hasLimitsOfShape
Opposite.small
univLE_of_max
instSmallHomFunctorOppositeTypeColimitCompYoneda 📖mathematicalSmall
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Limits.colimit
Functor.comp
yoneda
Limits.functorCategoryHasColimit
Limits.hasColimitOfHasColimitsOfShape
Functor.obj
Functor.flip
Limits.functorCategoryHasColimit
Limits.hasColimitOfHasColimitsOfShape
Limits.hasLimitOfHasLimitsOfShape

---

← Back to Index