There are only v-many natural transformations between Ind-objects #
We provide the instance LocallySmall.{v} (FullSubcategory (IsIndObject (C := C))), which will
serve as the basis for our definition of the category of Ind-objects.
Future work #
The equivalence established here serves as the basis for a well-known calculation of hom-sets of ind-objects as a limit of a colimit.
noncomputable def
CategoryTheory.colimitYonedaHomEquiv
{C : Type u}
[Category.{v, u} C]
{I : Type uā}
[Category.{vā, uā} I]
[Limits.HasColimitsOfShape I (Type v)]
[Limits.HasLimitsOfShape Iįµįµ (Type v)]
[Limits.HasLimitsOfShape Iįµįµ (Type (max u v))]
(F : Functor I C)
(G : Functor Cįµįµ (Type v))
:
Variant of colimitYonedaHomIsoLimitOp: natural transformations with domain
colimit (F ā yoneda) are equivalent to a limit in a lower universe.
Equations
Instances For
@[simp]
theorem
CategoryTheory.colimitYonedaHomEquiv_Ļ_apply
{C : Type u}
[Category.{v, u} C]
{I : Type uā}
[Category.{vā, uā} I]
[Limits.HasColimitsOfShape I (Type v)]
[Limits.HasLimitsOfShape Iįµįµ (Type v)]
[Limits.HasLimitsOfShape Iįµįµ (Type (max u v))]
(F : Functor I C)
(G : Functor Cįµįµ (Type v))
(Ī· : Limits.colimit (F.comp yoneda) ā¶ G)
(i : Iįµįµ)
:
Limits.limit.Ļ (F.op.comp G) i ((colimitYonedaHomEquiv F G) Ī·) = Ī·.app (Opposite.op (F.obj (Opposite.unop i)))
((Limits.colimit.ι (F.comp yoneda) (Opposite.unop i)).app (Opposite.op (F.obj (Opposite.unop i)))
(CategoryStruct.id (Opposite.unop (Opposite.op (F.obj (Opposite.unop i))))))
instance
CategoryTheory.instSmallHomFunctorOppositeTypeColimitCompYoneda
{C : Type u}
[Category.{v, u} C]
{I : Type uā}
[Category.{vā, uā} I]
[Limits.HasColimitsOfShape I (Type v)]
[Limits.HasLimitsOfShape Iįµįµ (Type v)]
[Limits.HasLimitsOfShape Iįµįµ (Type (max u v))]
(F : Functor I C)
(G : Functor Cįµįµ (Type v))
:
Small.{v, max u v} (Limits.colimit (F.comp yoneda) ā¶ G)