Documentation Verification Report

IsLimit

πŸ“ Source: Mathlib/CategoryTheory/Limits/IsLimit.lean

Statistics

MetricCount
DefinitionsIsColimit, coconeOfHom, colimitCocone, homOfCocone, coconePointUniqueUpToIso, coconePointsIsoOfEquivalence, coconePointsIsoOfNatIso, corepresentableBy, desc, descCoconeMorphism, equivIsoColimit, equivOfNatIsoOfIso, extendIso, extendIsoEquiv, homEquiv, homIso, homIso', isoUniqueCoconeMorphism, map, mapCoconeEquiv, mkCoconeMorphism, natIso, ofCoconeEquiv, ofCorepresentableBy, ofExistsUnique, ofExtendIso, ofFaithful, ofIsoColimit, ofLeftAdjoint, ofPointIso, ofWhiskerEquivalence, precomposeHomEquiv, precomposeInvEquiv, uniqueUpToIso, whiskerEquivalence, whiskerEquivalenceEquiv, IsLimit, coneOfHom, homOfCone, limitCone, conePointUniqueUpToIso, conePointsIsoOfEquivalence, conePointsIsoOfNatIso, equivIsoLimit, equivOfNatIsoOfIso, extendIso, extendIsoEquiv, homEquiv, homIso, homIso', isoUniqueConeMorphism, liftConeMorphism, map, mapConeEquiv, mkConeMorphism, natIso, ofConeEquiv, ofExistsUnique, ofExtendIso, ofFaithful, ofIsoLimit, ofPointIso, ofRepresentableBy, ofRightAdjoint, ofWhiskerEquivalence, postcomposeHomEquiv, postcomposeInvEquiv, representableBy, uniqueUpToIso, whiskerEquivalence, whiskerEquivalenceEquiv
71
TheoremscoconeOfHom_fac, coconeOfHom_homOfCocone, cocone_fac, homOfCocone_coconeOfHom, coconePointUniqueUpToIso_hom_desc, coconePointUniqueUpToIso_hom_desc_assoc, coconePointUniqueUpToIso_inv_desc, coconePointUniqueUpToIso_inv_desc_assoc, coconePointsIsoOfEquivalence_hom, coconePointsIsoOfEquivalence_inv, coconePointsIsoOfNatIso_hom, coconePointsIsoOfNatIso_hom_desc, coconePointsIsoOfNatIso_hom_desc_assoc, coconePointsIsoOfNatIso_inv, coconePointsIsoOfNatIso_inv_desc, coconePointsIsoOfNatIso_inv_desc_assoc, comp_coconePointUniqueUpToIso_hom, comp_coconePointUniqueUpToIso_hom_assoc, comp_coconePointUniqueUpToIso_inv, comp_coconePointUniqueUpToIso_inv_assoc, comp_coconePointsIsoOfNatIso_hom, comp_coconePointsIsoOfNatIso_hom_assoc, comp_coconePointsIsoOfNatIso_inv, comp_coconePointsIsoOfNatIso_inv_assoc, descCoconeMorphism_hom, desc_self, equivIsoColimit_apply, equivIsoColimit_symm_apply, existsUnique, fac, fac_assoc, homEquiv_apply, homEquiv_symm_naturality, homIso_hom, hom_desc, hom_ext, hom_isIso, mkCoconeMorphism_desc, nonempty_isColimit_iff_isIso_desc, ofCoconeEquiv_apply_desc, ofCoconeEquiv_symm_apply_desc, ofIsoColimit_desc, subsingleton, uniq, uniq_cocone_morphism, uniqueUpToIso_hom, uniqueUpToIso_inv, ΞΉ_app_homEquiv_symm, ΞΉ_app_homEquiv_symm_assoc, ΞΉ_map, ΞΉ_map_assoc, coneOfHom_fac, coneOfHom_homOfCone, cone_fac, homOfCone_coneOfHom, conePointUniqueUpToIso_hom_comp, conePointUniqueUpToIso_hom_comp_assoc, conePointUniqueUpToIso_inv_comp, conePointUniqueUpToIso_inv_comp_assoc, conePointsIsoOfEquivalence_hom, conePointsIsoOfEquivalence_inv, conePointsIsoOfNatIso_hom, conePointsIsoOfNatIso_hom_comp, conePointsIsoOfNatIso_hom_comp_assoc, conePointsIsoOfNatIso_inv, conePointsIsoOfNatIso_inv_comp, conePointsIsoOfNatIso_inv_comp_assoc, equivIsoLimit_apply, equivIsoLimit_symm_apply, existsUnique, fac, fac_assoc, homEquiv_apply, homEquiv_symm_naturality, homEquiv_symm_Ο€_app, homEquiv_symm_Ο€_app_assoc, homIso_hom, hom_ext, hom_isIso, hom_lift, liftConeMorphism_hom, lift_comp_conePointUniqueUpToIso_hom, lift_comp_conePointUniqueUpToIso_hom_assoc, lift_comp_conePointUniqueUpToIso_inv, lift_comp_conePointUniqueUpToIso_inv_assoc, lift_comp_conePointsIsoOfNatIso_hom, lift_comp_conePointsIsoOfNatIso_hom_assoc, lift_comp_conePointsIsoOfNatIso_inv, lift_comp_conePointsIsoOfNatIso_inv_assoc, lift_self, map_Ο€, map_Ο€_assoc, mkConeMorphism_lift, nonempty_isLimit_iff_isIso_lift, ofConeEquiv_apply_desc, ofConeEquiv_symm_apply_desc, ofIsoLimit_lift, subsingleton, uniq, uniq_cone_morphism, uniqueUpToIso_hom, uniqueUpToIso_inv
102
Total173

CategoryTheory.Limits

Definitions

NameCategoryTheorems
IsColimit πŸ“–CompData
52 mathmath: TopCat.binaryCofan_isColimit_iff, Types.binaryCofan_isColimit_iff, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, Types.isColimit_iff_coconeTypesIsColimit, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_isPullback_left, CategoryTheory.extensiveTopology.mem_sieves_iff_contains_colimit_cofan, CategoryTheory.Functor.Final.colimitCoconeOfComp_isColimit, AddCommGrpCat.isColimit_iff_bijective_desc, IsColimit.equivIsoColimit_apply, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, Cofan.isColimit_iff_isIso_sigmaDesc, CategoryTheory.BinaryCofan.isVanKampen_iff, CategoryTheory.IsPushout.isColimit', IsColimit.nonempty_isColimit_iff_isIso_desc, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_isPullback, CategoryTheory.is_coprod_iff_isPushout, CategoryTheory.Functor.Final.colimitCoconeComp_isColimit, IsColimit.ofCoconeEquiv_symm_apply_desc, IsInitial.to_eq_descCoconeMorphism, CategoryTheory.PreGaloisCategory.monoInducesIsoOnDirectSummand, Types.isConnected_iff_isColimit_pUnitCocone, CategoryTheory.Functor.IsWellOrderContinuous.nonempty_isColimit, BinaryCofan.isColimit_iff_isIso_inl, PreservesColimit.preserves, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, BinaryCofan.isColimit_iff_isIso_inr, AlgebraicGeometry.nonempty_isColimit_cofanMk_of, CategoryTheory.BicartesianSq.isColimit', IsColimit.descCoconeMorphism_eq_isInitial_to, Cocone.isColimit_iff_isIso_colimMap_ΞΉ, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left, CategoryTheory.Functor.isDenseAt_iff, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone, SheafOfModules.Presentation.map_relations_I, CategoryTheory.TransfiniteCompositionOfShape.ici_isColimit, IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.Square.isPushout_iff, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, IsColimit.equivIsoColimit_symm_apply, ReflectsColimit.reflects, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_right, TopCat.nonempty_isColimit_iff_eq_coinduced, AlgebraicGeometry.nonempty_isColimit_binaryCofanMk_of_isCompl, IsColimit.subsingleton, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_isPullback_right, Cofan.nonempty_isColimit_iff_isIso_sigmaDesc, CategoryTheory.Presieve.Extensive.arrows_nonempty_isColimit, CategoryTheory.Functor.CoconeTypes.isColimit_iff, Cofan.isColimit_cofanTypes_iff, Cofan.nonempty_isColimit_iff_bijective_fromSigma, AlgebraicGeometry.nonempty_isColimit_Ξ“_mapCocone, PreservesColimitβ‚‚.nonempty_isColimit_mapCoconeβ‚‚
IsLimit πŸ“–CompData
44 mathmath: IsLimit.ofConeEquiv_symm_apply_desc, IsLimit.equivIsoLimit_apply, CategoryTheory.Equalizer.Sieve.equalizer_sheaf_condition, IsLimit.liftConeMorphism_eq_isTerminal_from, PreservesLimit.preserves, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, CategoryTheory.IsPullback.isLimit', IsLimit.nonempty_isLimit_iff_isIso_lift, IsLimit.subsingleton, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, ReflectsLimit.reflects, CategoryTheory.Functor.Initial.limitConeComp_isLimit, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, TopCat.nonempty_isLimit_iff_eq_induced, CategoryTheory.Presheaf.isSheaf_iff_of_isGeneratedByOneHypercovers, IsLimit.equivIsoLimit_symm_apply, IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Equalizer.Presieve.sheaf_condition, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Square.isPullback_iff, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Presheaf.isSheaf_iff_multifork, PreservesLimitβ‚‚.nonempty_isLimit_mapConeβ‚‚, CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition, BinaryFan.isLimit_iff_isIso_fst, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, Cone.isLimit_iff_isIso_limMap_Ο€, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, Fan.nonempty_isLimit_iff_isIso_piLift, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff, BinaryFan.isLimit_iff_isIso_snd, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, IsTerminal.from_eq_liftConeMorphism, Types.isLimit_iff_bijective_sectionOfCone, Multifork.isLimit_types_iff, Types.isLimit_iff, Types.type_equalizer_iff_unique, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology

CategoryTheory.Limits.IsColimit

Definitions

NameCategoryTheorems
coconePointUniqueUpToIso πŸ“–CompOp
13 mathmath: CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, comp_coconePointUniqueUpToIso_inv, coconePointUniqueUpToIso_inv_desc_assoc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv_assoc, comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc, coconePointUniqueUpToIso_inv_desc, coconePointUniqueUpToIso_hom_desc_assoc, comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom, comp_coconePointUniqueUpToIso_hom_assoc, coconePointUniqueUpToIso_hom_desc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv
coconePointsIsoOfEquivalence πŸ“–CompOp
2 mathmath: coconePointsIsoOfEquivalence_hom, coconePointsIsoOfEquivalence_inv
coconePointsIsoOfNatIso πŸ“–CompOp
10 mathmath: comp_coconePointsIsoOfNatIso_hom_assoc, coconePointsIsoOfNatIso_hom_desc_assoc, coconePointsIsoOfNatIso_hom, comp_coconePointsIsoOfNatIso_hom, coconePointsIsoOfNatIso_inv_desc_assoc, coconePointsIsoOfNatIso_hom_desc, coconePointsIsoOfNatIso_inv_desc, comp_coconePointsIsoOfNatIso_inv_assoc, comp_coconePointsIsoOfNatIso_inv, coconePointsIsoOfNatIso_inv
corepresentableBy πŸ“–CompOpβ€”
desc πŸ“–CompOp
110 mathmath: CategoryTheory.Limits.Bicone.Ο€_of_isColimit, CategoryTheory.Limits.FormalCoproduct.isColimitCofan_desc_Ο†, CategoryTheory.Limits.isLimitConeRightOpOfCocone_lift, fac, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Functor.isColimitCoconeOfIsLeftKanExtension_desc, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, CategoryTheory.Monad.beckCoequalizer_desc, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.Limits.isColimitOfConeRightOpOfCocone_desc, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, CategoryTheory.Limits.Types.binaryCoproductColimit_desc, CategoryTheory.Limits.mkCofanColimit_desc, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, nonempty_isColimit_iff_isIso_desc, mkCoconeMorphism_desc, CategoryTheory.Limits.Multicofork.IsColimit.mk_desc, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.Limits.Cofan.IsColimit.inj_desc, CategoryTheory.ShortComplex.RightHomologyData.wΞΉ_assoc, desc_self, ofCoconeEquiv_symm_apply_desc, coconePointsIsoOfNatIso_hom_desc_assoc, CategoryTheory.Limits.FormalCoproduct.isColimitCofan_desc_f, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, coconePointUniqueUpToIso_inv_desc_assoc, CategoryTheory.Limits.isColimitOfConeOfCoconeLeftOp_desc, CategoryTheory.Limits.cokernelBiprodInlIso_inv, CategoryTheory.Limits.isLimitConeOfCoconeUnop_lift, CategoryTheory.Limits.isColimitOfConeUnopOfCocone_desc, ModuleCat.directLimitIsColimit_desc, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.snd_of_isColimit, CategoryTheory.Limits.Cofork.IsColimit.Ο€_desc_assoc, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, CategoryTheory.Limits.cokernelBiprodInrIso_inv, Condensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, AddCommGrpCat.Colimits.Quot.desc_toCocone_desc, coconePointsIsoOfEquivalence_hom, CategoryTheory.Limits.isLimitConeUnopOfCocone_lift, CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, CategoryTheory.Comma.coconeOfPreserves_ΞΉ_app_right, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Comma.coconeOfPreserves_pt_hom, AddCommGrpCat.Colimits.Quot.desc_toCocone_desc_app, CategoryTheory.Limits.cokernelBiproductΞΉIso_inv, coconePointsIsoOfNatIso_inv_desc_assoc, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_fst, coconePointsIsoOfEquivalence_inv, CategoryTheory.ShortComplex.RightHomologyData.wΞΉ, coconePointsIsoOfNatIso_hom_desc, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, coconePointUniqueUpToIso_inv_desc, CategoryTheory.Comma.coconeOfPreserves_ΞΉ_app_left, CategoryTheory.Limits.isLimitConeOfCoconeRightOp_lift, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.Coyoneda.colimitCoconeIsColimit_desc, coconePointUniqueUpToIso_hom_desc_assoc, CategoryTheory.FunctorToTypes.binaryCoproductColimit_desc, CategoryTheory.Limits.Cofan.IsColimit.inj_desc_assoc, uniq, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, coconePointsIsoOfNatIso_inv_desc, ofCoconeEquiv_apply_desc, CategoryTheory.Limits.isColimitOfConeLeftOpOfCocone_desc, CategoryTheory.Limits.splitEpiOfIdempotentOfIsColimitCofork_section_, descCoconeMorphism_hom, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_a, hom_desc, CommRingCat.coproductCoconeIsColimit_desc, CategoryTheory.Limits.isLimitConeLeftOpOfCocone_lift, CategoryTheory.Limits.fst_of_isColimit, CategoryTheory.Limits.isLimitConeOfCoconeLeftOp_lift, CategoryTheory.Limits.IndObjectPresentation.extend_isColimit_desc_app, pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Bicone.ofColimitCocone_Ο€, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, CategoryTheory.Limits.BinaryCofan.IsColimit.desc'_coe, CategoryTheory.Limits.combineCocones_ΞΉ_app_app, CategoryTheory.Limits.isColimitOfConeOfCoconeRightOp_desc, ofIsoColimit_desc, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_snd, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.coconeOfCoconeUncurry_ΞΉ_app, CategoryTheory.Limits.Cofork.IsColimit.Ο€_desc, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, CategoryTheory.Limits.combineCocones_pt_map, CategoryTheory.Limits.isColimitOfConeOfCoconeUnop_desc, coconePointUniqueUpToIso_hom_desc, CategoryTheory.preserves_desc_mapCocone, CategoryTheory.Limits.CompleteLattice.colimitCocone_isColimit_desc, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_isColimit_desc, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, CategoryTheory.Limits.coconeOfCoconeCurry_ΞΉ_app, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, fac_assoc, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Monad.ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, CategoryTheory.Limits.colimit.pre_eq, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.Limits.colimit.isColimit_desc
descCoconeMorphism πŸ“–CompOp
8 mathmath: uniqueUpToIso_hom, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.IsInitial.to_eq_descCoconeMorphism, descCoconeMorphism_eq_isInitial_to, ofCoconeEquiv_apply_desc, descCoconeMorphism_hom, uniqueUpToIso_inv
equivIsoColimit πŸ“–CompOp
2 mathmath: equivIsoColimit_apply, equivIsoColimit_symm_apply
equivOfNatIsoOfIso πŸ“–CompOp
1 mathmath: SheafOfModules.Presentation.map_relations_I
extendIso πŸ“–CompOpβ€”
extendIsoEquiv πŸ“–CompOpβ€”
homEquiv πŸ“–CompOp
6 mathmath: homEquiv_apply, homEquiv_symm_naturality, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, ΞΉ_app_homEquiv_symm_assoc, ΞΉ_app_homEquiv_symm, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc
homIso πŸ“–CompOp
1 mathmath: homIso_hom
homIso' πŸ“–CompOpβ€”
isoUniqueCoconeMorphism πŸ“–CompOpβ€”
map πŸ“–CompOp
12 mathmath: CategoryTheory.IndParallelPairPresentation.hf, CategoryTheory.NonemptyParallelPairPresentationAux.hf, ΞΉ_map, ΞΉ_map_assoc, coconePointsIsoOfNatIso_hom_desc_assoc, coconePointsIsoOfNatIso_hom, coconePointsIsoOfNatIso_inv_desc_assoc, coconePointsIsoOfNatIso_hom_desc, coconePointsIsoOfNatIso_inv_desc, CategoryTheory.IndParallelPairPresentation.hg, coconePointsIsoOfNatIso_inv, CategoryTheory.NonemptyParallelPairPresentationAux.hg
mapCoconeEquiv πŸ“–CompOpβ€”
mkCoconeMorphism πŸ“–CompOp
1 mathmath: mkCoconeMorphism_desc
natIso πŸ“–CompOpβ€”
ofCoconeEquiv πŸ“–CompOp
2 mathmath: ofCoconeEquiv_symm_apply_desc, ofCoconeEquiv_apply_desc
ofCorepresentableBy πŸ“–CompOpβ€”
ofExistsUnique πŸ“–CompOpβ€”
ofExtendIso πŸ“–CompOpβ€”
ofFaithful πŸ“–CompOpβ€”
ofIsoColimit πŸ“–CompOp
6 mathmath: equivIsoColimit_apply, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, SimplicialObject.Splitting.ofIso_isColimit', equivIsoColimit_symm_apply, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isColimit, ofIsoColimit_desc
ofLeftAdjoint πŸ“–CompOp
1 mathmath: CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right
ofPointIso πŸ“–CompOpβ€”
ofWhiskerEquivalence πŸ“–CompOpβ€”
precomposeHomEquiv πŸ“–CompOpβ€”
precomposeInvEquiv πŸ“–CompOpβ€”
uniqueUpToIso πŸ“–CompOp
2 mathmath: uniqueUpToIso_hom, uniqueUpToIso_inv
whiskerEquivalence πŸ“–CompOp
3 mathmath: HomotopicalAlgebra.AttachCells.reindex_isColimitβ‚‚, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_isColimit, HomotopicalAlgebra.AttachCells.reindex_isColimit₁
whiskerEquivalenceEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coconePointUniqueUpToIso_hom_desc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
coconePointUniqueUpToIso
desc
β€”uniq
comp_coconePointUniqueUpToIso_hom_assoc
fac
coconePointUniqueUpToIso_hom_desc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
coconePointUniqueUpToIso
desc
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coconePointUniqueUpToIso_hom_desc
coconePointUniqueUpToIso_inv_desc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
coconePointUniqueUpToIso
desc
β€”uniq
comp_coconePointUniqueUpToIso_inv_assoc
fac
coconePointUniqueUpToIso_inv_desc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
coconePointUniqueUpToIso
desc
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coconePointUniqueUpToIso_inv_desc
coconePointsIsoOfEquivalence_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone.pt
coconePointsIsoOfEquivalence
desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocones.equivalenceOfReindexing
β€”β€”
coconePointsIsoOfEquivalence_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone.pt
coconePointsIsoOfEquivalence
desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cocones.equivalenceOfReindexing
CategoryTheory.Equivalence.symm
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Equivalence.invFunIdAssoc
β€”β€”
coconePointsIsoOfNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone.pt
coconePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”β€”
coconePointsIsoOfNatIso_hom_desc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
coconePointsIsoOfNatIso
desc
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”hom_ext
ΞΉ_map_assoc
fac
ΞΉ_map
coconePointsIsoOfNatIso_hom_desc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.hom
coconePointsIsoOfNatIso
desc
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coconePointsIsoOfNatIso_hom_desc
coconePointsIsoOfNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone.pt
coconePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”β€”
coconePointsIsoOfNatIso_inv_desc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
coconePointsIsoOfNatIso
desc
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”hom_ext
ΞΉ_map_assoc
fac
ΞΉ_map
coconePointsIsoOfNatIso_inv_desc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
coconePointsIsoOfNatIso
desc
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coconePointsIsoOfNatIso_inv_desc
comp_coconePointUniqueUpToIso_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.hom
coconePointUniqueUpToIso
β€”CategoryTheory.Limits.CoconeMorphism.w
comp_coconePointUniqueUpToIso_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.hom
coconePointUniqueUpToIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_coconePointUniqueUpToIso_hom
comp_coconePointUniqueUpToIso_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.inv
coconePointUniqueUpToIso
β€”CategoryTheory.Limits.CoconeMorphism.w
comp_coconePointUniqueUpToIso_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.inv
coconePointUniqueUpToIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_coconePointUniqueUpToIso_inv
comp_coconePointsIsoOfNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.hom
coconePointsIsoOfNatIso
β€”ΞΉ_map
comp_coconePointsIsoOfNatIso_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.hom
coconePointsIsoOfNatIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_coconePointsIsoOfNatIso_hom
comp_coconePointsIsoOfNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.inv
coconePointsIsoOfNatIso
β€”ΞΉ_map
comp_coconePointsIsoOfNatIso_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Iso.inv
coconePointsIsoOfNatIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_coconePointsIsoOfNatIso_inv
descCoconeMorphism_hom πŸ“–mathematicalβ€”CategoryTheory.Limits.CoconeMorphism.hom
descCoconeMorphism
desc
β€”β€”
desc_self πŸ“–mathematicalβ€”desc
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
β€”uniq
CategoryTheory.Category.comp_id
equivIsoColimit_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
EquivLike.toFunLike
Equiv.instEquivLike
equivIsoColimit
ofIsoColimit
β€”β€”
equivIsoColimit_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivIsoColimit
ofIsoColimit
CategoryTheory.Iso.symm
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
β€”β€”
existsUnique πŸ“–mathematicalβ€”ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
β€”fac
uniq
fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
desc
β€”β€”
fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
desc
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
homEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Limits.Cocone.extend
β€”β€”
homEquiv_symm_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”Equiv.injective
Equiv.apply_symm_apply
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.ext'
ΞΉ_app_homEquiv_symm_assoc
homIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
homIso
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Limits.Cocone.extend
β€”β€”
hom_desc πŸ“–mathematicalβ€”desc
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
β€”uniq
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
hom_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
β€”β€”hom_desc
hom_isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
β€”uniq_cocone_morphism
mkCoconeMorphism_desc πŸ“–mathematicalβ€”desc
mkCoconeMorphism
CategoryTheory.Limits.CoconeMorphism.hom
β€”β€”
nonempty_isColimit_iff_isIso_desc πŸ“–mathematicalβ€”CategoryTheory.Limits.IsColimit
CategoryTheory.IsIso
CategoryTheory.Limits.Cocone.pt
desc
β€”hom_ext
fac_assoc
fac
CategoryTheory.Category.comp_id
ofCoconeEquiv_apply_desc πŸ“–mathematicalβ€”desc
DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
EquivLike.toFunLike
Equiv.instEquivLike
ofCoconeEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unit
CategoryTheory.Functor.map
descCoconeMorphism
CategoryTheory.Equivalence.unitInv
β€”β€”
ofCoconeEquiv_symm_apply_desc πŸ“–mathematicalβ€”desc
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ofCoconeEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Functor.map
descCoconeMorphism
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counit
β€”β€”
ofIsoColimit_desc πŸ“–mathematicalβ€”desc
ofIsoColimit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
β€”β€”
subsingleton πŸ“–mathematicalβ€”CategoryTheory.Limits.IsColimitβ€”β€”
uniq πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
descβ€”β€”
uniq_cocone_morphism πŸ“–β€”β€”β€”β€”CategoryTheory.Limits.CoconeMorphism.ext
uniq
CategoryTheory.Limits.CoconeMorphism.w
uniqueUpToIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
uniqueUpToIso
descCoconeMorphism
β€”β€”
uniqueUpToIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
uniqueUpToIso
descCoconeMorphism
β€”β€”
ΞΉ_app_homEquiv_symm πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
β€”fac
ΞΉ_app_homEquiv_symm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΞΉ_app_homEquiv_symm
ΞΉ_map πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
map
β€”fac
ΞΉ_map_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΞΉ_map

CategoryTheory.Limits.IsColimit.OfNatIso

Definitions

NameCategoryTheorems
coconeOfHom πŸ“–CompOp
3 mathmath: homOfCocone_coconeOfHom, coconeOfHom_homOfCocone, coconeOfHom_fac
colimitCocone πŸ“–CompOp
2 mathmath: cocone_fac, coconeOfHom_fac
homOfCocone πŸ“–CompOp
3 mathmath: homOfCocone_coconeOfHom, cocone_fac, coconeOfHom_homOfCocone

Theorems

NameKindAssumesProvesValidatesDepends On
coconeOfHom_fac πŸ“–mathematicalβ€”coconeOfHom
CategoryTheory.Limits.Cocone.extend
colimitCocone
β€”CategoryTheory.Category.id_comp
CategoryTheory.Functor.CorepresentableBy.homEquiv_comp
coconeOfHom_homOfCocone πŸ“–mathematicalβ€”coconeOfHom
CategoryTheory.Limits.Cocone.pt
homOfCocone
β€”Equiv.apply_symm_apply
cocone_fac πŸ“–mathematicalβ€”CategoryTheory.Limits.Cocone.extend
colimitCocone
CategoryTheory.Limits.Cocone.pt
homOfCocone
β€”coconeOfHom_homOfCocone
homOfCocone_coconeOfHom
coconeOfHom_fac
homOfCocone_coconeOfHom πŸ“–mathematicalβ€”homOfCocone
coconeOfHom
β€”Equiv.symm_apply_apply

CategoryTheory.Limits.IsLimit

Definitions

NameCategoryTheorems
conePointUniqueUpToIso πŸ“–CompOp
18 mathmath: conePointUniqueUpToIso_hom_comp_assoc, lift_comp_conePointUniqueUpToIso_hom_assoc, conePointUniqueUpToIso_hom_comp, CategoryTheory.Limits.opProductIsoCoproduct'_comp_self, lift_comp_conePointUniqueUpToIso_hom, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.biproduct.conePointUniqueUpToIso_inv, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.biprod.conePointUniqueUpToIso_hom, lift_comp_conePointUniqueUpToIso_inv_assoc, lift_comp_conePointUniqueUpToIso_inv, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp, CategoryTheory.Limits.Pi.map_eq_prod_map, conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.biprod.conePointUniqueUpToIso_inv, conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.biproduct.conePointUniqueUpToIso_hom
conePointsIsoOfEquivalence πŸ“–CompOp
2 mathmath: conePointsIsoOfEquivalence_hom, conePointsIsoOfEquivalence_inv
conePointsIsoOfNatIso πŸ“–CompOp
10 mathmath: conePointsIsoOfNatIso_hom, conePointsIsoOfNatIso_inv_comp, lift_comp_conePointsIsoOfNatIso_inv, lift_comp_conePointsIsoOfNatIso_hom, conePointsIsoOfNatIso_hom_comp_assoc, conePointsIsoOfNatIso_inv, lift_comp_conePointsIsoOfNatIso_inv_assoc, lift_comp_conePointsIsoOfNatIso_hom_assoc, conePointsIsoOfNatIso_inv_comp_assoc, conePointsIsoOfNatIso_hom_comp
equivIsoLimit πŸ“–CompOp
2 mathmath: equivIsoLimit_apply, equivIsoLimit_symm_apply
equivOfNatIsoOfIso πŸ“–CompOpβ€”
extendIso πŸ“–CompOpβ€”
extendIsoEquiv πŸ“–CompOpβ€”
homEquiv πŸ“–CompOp
4 mathmath: homEquiv_symm_Ο€_app, homEquiv_symm_Ο€_app_assoc, homEquiv_symm_naturality, homEquiv_apply
homIso πŸ“–CompOp
1 mathmath: homIso_hom
homIso' πŸ“–CompOpβ€”
isoUniqueConeMorphism πŸ“–CompOpβ€”
liftConeMorphism πŸ“–CompOp
8 mathmath: ofConeEquiv_symm_apply_desc, liftConeMorphism_eq_isTerminal_from, uniqueUpToIso_inv, liftConeMorphism_hom, ofConeEquiv_apply_desc, uniqueUpToIso_hom, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Limits.IsTerminal.from_eq_liftConeMorphism
map πŸ“–CompOp
8 mathmath: map_Ο€, conePointsIsoOfNatIso_hom, lift_comp_conePointsIsoOfNatIso_inv, lift_comp_conePointsIsoOfNatIso_hom, conePointsIsoOfNatIso_inv, lift_comp_conePointsIsoOfNatIso_inv_assoc, lift_comp_conePointsIsoOfNatIso_hom_assoc, map_Ο€_assoc
mapConeEquiv πŸ“–CompOpβ€”
mkConeMorphism πŸ“–CompOp
1 mathmath: mkConeMorphism_lift
natIso πŸ“–CompOpβ€”
ofConeEquiv πŸ“–CompOp
2 mathmath: ofConeEquiv_symm_apply_desc, ofConeEquiv_apply_desc
ofExistsUnique πŸ“–CompOpβ€”
ofExtendIso πŸ“–CompOpβ€”
ofFaithful πŸ“–CompOpβ€”
ofIsoLimit πŸ“–CompOp
3 mathmath: equivIsoLimit_apply, ofIsoLimit_lift, equivIsoLimit_symm_apply
ofPointIso πŸ“–CompOpβ€”
ofRepresentableBy πŸ“–CompOpβ€”
ofRightAdjoint πŸ“–CompOp
1 mathmath: CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left
ofWhiskerEquivalence πŸ“–CompOpβ€”
postcomposeHomEquiv πŸ“–CompOpβ€”
postcomposeInvEquiv πŸ“–CompOpβ€”
representableBy πŸ“–CompOpβ€”
uniqueUpToIso πŸ“–CompOp
2 mathmath: uniqueUpToIso_inv, uniqueUpToIso_hom
whiskerEquivalence πŸ“–CompOpβ€”
whiskerEquivalenceEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
conePointUniqueUpToIso_hom_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
conePointUniqueUpToIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Limits.ConeMorphism.w
conePointUniqueUpToIso_hom_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.hom
conePointUniqueUpToIso
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conePointUniqueUpToIso_hom_comp
conePointUniqueUpToIso_inv_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
conePointUniqueUpToIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Limits.ConeMorphism.w
conePointUniqueUpToIso_inv_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.inv
conePointUniqueUpToIso
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conePointUniqueUpToIso_inv_comp
conePointsIsoOfEquivalence_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone.pt
conePointsIsoOfEquivalence
lift
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cones.equivalenceOfReindexing
CategoryTheory.Equivalence.symm
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.symm
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Equivalence.invFunIdAssoc
β€”β€”
conePointsIsoOfEquivalence_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone.pt
conePointsIsoOfEquivalence
lift
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cones.equivalenceOfReindexing
β€”β€”
conePointsIsoOfNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone.pt
conePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”β€”
conePointsIsoOfNatIso_hom_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
conePointsIsoOfNatIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”map_Ο€
conePointsIsoOfNatIso_hom_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.hom
conePointsIsoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conePointsIsoOfNatIso_hom_comp
conePointsIsoOfNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone.pt
conePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”β€”
conePointsIsoOfNatIso_inv_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
conePointsIsoOfNatIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”map_Ο€
conePointsIsoOfNatIso_inv_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Iso.inv
conePointsIsoOfNatIso
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conePointsIsoOfNatIso_inv_comp
equivIsoLimit_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
EquivLike.toFunLike
Equiv.instEquivLike
equivIsoLimit
ofIsoLimit
β€”β€”
equivIsoLimit_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivIsoLimit
ofIsoLimit
CategoryTheory.Iso.symm
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
β€”β€”
existsUnique πŸ“–mathematicalβ€”ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
β€”fac
uniq
fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
lift
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”β€”
fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
homEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Limits.Cone.Ο€
CategoryTheory.Limits.Cone.extend
β€”β€”
homEquiv_symm_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”Equiv.injective
Equiv.apply_symm_apply
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.ext'
homEquiv_symm_Ο€_app
homEquiv_symm_Ο€_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.category
CategoryTheory.Functor.const
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.Ο€
β€”fac
homEquiv_symm_Ο€_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_symm_Ο€_app
homIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
homIso
CategoryTheory.Limits.Cone.Ο€
CategoryTheory.Limits.Cone.extend
β€”β€”
hom_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”β€”hom_lift
hom_isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
β€”uniq_cone_morphism
hom_lift πŸ“–mathematicalβ€”lift
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.Ο€
β€”uniq
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.Cone.w
liftConeMorphism_hom πŸ“–mathematicalβ€”CategoryTheory.Limits.ConeMorphism.hom
liftConeMorphism
lift
β€”β€”
lift_comp_conePointUniqueUpToIso_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.hom
conePointUniqueUpToIso
β€”uniq
CategoryTheory.Category.assoc
conePointUniqueUpToIso_hom_comp
fac
lift_comp_conePointUniqueUpToIso_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.hom
conePointUniqueUpToIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_conePointUniqueUpToIso_hom
lift_comp_conePointUniqueUpToIso_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.inv
conePointUniqueUpToIso
β€”uniq
CategoryTheory.Category.assoc
conePointUniqueUpToIso_inv_comp
fac
lift_comp_conePointUniqueUpToIso_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.inv
conePointUniqueUpToIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_conePointUniqueUpToIso_inv
lift_comp_conePointsIsoOfNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.hom
conePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”hom_ext
CategoryTheory.Category.assoc
map_Ο€
fac_assoc
lift_comp_conePointsIsoOfNatIso_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.hom
conePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_conePointsIsoOfNatIso_hom
lift_comp_conePointsIsoOfNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.inv
conePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”hom_ext
CategoryTheory.Category.assoc
map_Ο€
fac_assoc
lift_comp_conePointsIsoOfNatIso_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
lift
CategoryTheory.Iso.inv
conePointsIsoOfNatIso
map
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_comp_conePointsIsoOfNatIso_inv
lift_self πŸ“–mathematicalβ€”lift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
β€”uniq
CategoryTheory.Category.id_comp
map_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
map
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”fac
map_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
map
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_Ο€
mkConeMorphism_lift πŸ“–mathematicalβ€”lift
mkConeMorphism
CategoryTheory.Limits.ConeMorphism.hom
β€”β€”
nonempty_isLimit_iff_isIso_lift πŸ“–mathematicalβ€”CategoryTheory.Limits.IsLimit
CategoryTheory.IsIso
CategoryTheory.Limits.Cone.pt
lift
β€”hom_ext
CategoryTheory.Category.assoc
fac
CategoryTheory.Category.id_comp
ofConeEquiv_apply_desc πŸ“–mathematicalβ€”lift
DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
EquivLike.toFunLike
Equiv.instEquivLike
ofConeEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.id
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.comp
CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
liftConeMorphism
CategoryTheory.Iso.inv
β€”β€”
ofConeEquiv_symm_apply_desc πŸ“–mathematicalβ€”lift
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ofConeEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.map
liftConeMorphism
β€”β€”
ofIsoLimit_lift πŸ“–mathematicalβ€”lift
ofIsoLimit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
β€”β€”
subsingleton πŸ“–mathematicalβ€”CategoryTheory.Limits.IsLimitβ€”β€”
uniq πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.Ο€
liftβ€”β€”
uniq_cone_morphism πŸ“–β€”β€”β€”β€”CategoryTheory.Limits.ConeMorphism.ext
uniq
CategoryTheory.Limits.ConeMorphism.w
uniqueUpToIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
uniqueUpToIso
liftConeMorphism
β€”β€”
uniqueUpToIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
uniqueUpToIso
liftConeMorphism
β€”β€”

CategoryTheory.Limits.IsLimit.OfNatIso

Definitions

NameCategoryTheorems
coneOfHom πŸ“–CompOp
3 mathmath: coneOfHom_fac, homOfCone_coneOfHom, coneOfHom_homOfCone
homOfCone πŸ“–CompOp
3 mathmath: cone_fac, homOfCone_coneOfHom, coneOfHom_homOfCone
limitCone πŸ“–CompOp
2 mathmath: cone_fac, coneOfHom_fac

Theorems

NameKindAssumesProvesValidatesDepends On
coneOfHom_fac πŸ“–mathematicalβ€”coneOfHom
CategoryTheory.Limits.Cone.extend
limitCone
β€”CategoryTheory.Category.comp_id
CategoryTheory.Functor.RepresentableBy.homEquiv_comp
coneOfHom_homOfCone πŸ“–mathematicalβ€”coneOfHom
CategoryTheory.Limits.Cone.pt
homOfCone
β€”Equiv.apply_symm_apply
cone_fac πŸ“–mathematicalβ€”CategoryTheory.Limits.Cone.extend
limitCone
CategoryTheory.Limits.Cone.pt
homOfCone
β€”coneOfHom_homOfCone
homOfCone_coneOfHom
coneOfHom_fac
homOfCone_coneOfHom πŸ“–mathematicalβ€”homOfCone
coneOfHom
β€”Equiv.symm_apply_apply

---

← Back to Index