| Name | Category | Theorems |
coconePointUniqueUpToIso π | CompOp | 13 mathmath: CategoryTheory.Limits.opCoproductIsoProduct'_comp_self, comp_coconePointUniqueUpToIso_inv, coconePointUniqueUpToIso_inv_desc_assoc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv_assoc, comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc, coconePointUniqueUpToIso_inv_desc, coconePointUniqueUpToIso_hom_desc_assoc, comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom, comp_coconePointUniqueUpToIso_hom_assoc, coconePointUniqueUpToIso_hom_desc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv
|
coconePointsIsoOfEquivalence π | CompOp | 2 mathmath: coconePointsIsoOfEquivalence_hom, coconePointsIsoOfEquivalence_inv
|
coconePointsIsoOfNatIso π | CompOp | 10 mathmath: comp_coconePointsIsoOfNatIso_hom_assoc, coconePointsIsoOfNatIso_hom_desc_assoc, coconePointsIsoOfNatIso_hom, comp_coconePointsIsoOfNatIso_hom, coconePointsIsoOfNatIso_inv_desc_assoc, coconePointsIsoOfNatIso_hom_desc, coconePointsIsoOfNatIso_inv_desc, comp_coconePointsIsoOfNatIso_inv_assoc, comp_coconePointsIsoOfNatIso_inv, coconePointsIsoOfNatIso_inv
|
corepresentableBy π | CompOp | β |
desc π | CompOp | 110 mathmath: CategoryTheory.Limits.Bicone.Ο_of_isColimit, CategoryTheory.Limits.FormalCoproduct.isColimitCofan_desc_Ο, CategoryTheory.Limits.isLimitConeRightOpOfCocone_lift, fac, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Functor.isColimitCoconeOfIsLeftKanExtension_desc, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, CategoryTheory.Monad.beckCoequalizer_desc, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.Limits.isColimitOfConeRightOpOfCocone_desc, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, CategoryTheory.Limits.Types.binaryCoproductColimit_desc, CategoryTheory.Limits.mkCofanColimit_desc, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, nonempty_isColimit_iff_isIso_desc, mkCoconeMorphism_desc, CategoryTheory.Limits.Multicofork.IsColimit.mk_desc, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.Limits.Cofan.IsColimit.inj_desc, CategoryTheory.ShortComplex.RightHomologyData.wΞΉ_assoc, desc_self, ofCoconeEquiv_symm_apply_desc, coconePointsIsoOfNatIso_hom_desc_assoc, CategoryTheory.Limits.FormalCoproduct.isColimitCofan_desc_f, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, coconePointUniqueUpToIso_inv_desc_assoc, CategoryTheory.Limits.isColimitOfConeOfCoconeLeftOp_desc, CategoryTheory.Limits.cokernelBiprodInlIso_inv, CategoryTheory.Limits.isLimitConeOfCoconeUnop_lift, CategoryTheory.Limits.isColimitOfConeUnopOfCocone_desc, ModuleCat.directLimitIsColimit_desc, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.snd_of_isColimit, CategoryTheory.Limits.Cofork.IsColimit.Ο_desc_assoc, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, CategoryTheory.Limits.cokernelBiprodInrIso_inv, Condensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, AddCommGrpCat.Colimits.Quot.desc_toCocone_desc, coconePointsIsoOfEquivalence_hom, CategoryTheory.Limits.isLimitConeUnopOfCocone_lift, CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, CategoryTheory.Comma.coconeOfPreserves_ΞΉ_app_right, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Comma.coconeOfPreserves_pt_hom, AddCommGrpCat.Colimits.Quot.desc_toCocone_desc_app, CategoryTheory.Limits.cokernelBiproductΞΉIso_inv, coconePointsIsoOfNatIso_inv_desc_assoc, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_fst, coconePointsIsoOfEquivalence_inv, CategoryTheory.ShortComplex.RightHomologyData.wΞΉ, coconePointsIsoOfNatIso_hom_desc, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, coconePointUniqueUpToIso_inv_desc, CategoryTheory.Comma.coconeOfPreserves_ΞΉ_app_left, CategoryTheory.Limits.isLimitConeOfCoconeRightOp_lift, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f, CategoryTheory.Coyoneda.colimitCoconeIsColimit_desc, coconePointUniqueUpToIso_hom_desc_assoc, CategoryTheory.FunctorToTypes.binaryCoproductColimit_desc, CategoryTheory.Limits.Cofan.IsColimit.inj_desc_assoc, uniq, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, coconePointsIsoOfNatIso_inv_desc, ofCoconeEquiv_apply_desc, CategoryTheory.Limits.isColimitOfConeLeftOpOfCocone_desc, CategoryTheory.Limits.splitEpiOfIdempotentOfIsColimitCofork_section_, descCoconeMorphism_hom, CategoryTheory.Comonad.ForgetCreatesColimits'.coconePoint_a, hom_desc, CommRingCat.coproductCoconeIsColimit_desc, CategoryTheory.Limits.isLimitConeLeftOpOfCocone_lift, CategoryTheory.Limits.fst_of_isColimit, CategoryTheory.Limits.isLimitConeOfCoconeLeftOp_lift, CategoryTheory.Limits.IndObjectPresentation.extend_isColimit_desc_app, pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Bicone.ofColimitCocone_Ο, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit_desc_f, CategoryTheory.Limits.BinaryCofan.IsColimit.desc'_coe, CategoryTheory.Limits.combineCocones_ΞΉ_app_app, CategoryTheory.Limits.isColimitOfConeOfCoconeRightOp_desc, ofIsoColimit_desc, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_snd, LightCondensed.isColimitLocallyConstantPresheaf_desc_apply, CategoryTheory.Limits.coconeOfCoconeUncurry_ΞΉ_app, CategoryTheory.Limits.Cofork.IsColimit.Ο_desc, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, CategoryTheory.Limits.combineCocones_pt_map, CategoryTheory.Limits.isColimitOfConeOfCoconeUnop_desc, coconePointUniqueUpToIso_hom_desc, CategoryTheory.preserves_desc_mapCocone, CategoryTheory.Limits.CompleteLattice.colimitCocone_isColimit_desc, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_isColimit_desc, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, CategoryTheory.Limits.coconeOfCoconeCurry_ΞΉ_app, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, fac_assoc, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Monad.ForgetCreatesColimits.liftedCoconeIsColimit_desc_f, CategoryTheory.Limits.colimit.pre_eq, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.Limits.colimit.isColimit_desc
|
descCoconeMorphism π | CompOp | 8 mathmath: uniqueUpToIso_hom, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.IsInitial.to_eq_descCoconeMorphism, descCoconeMorphism_eq_isInitial_to, ofCoconeEquiv_apply_desc, descCoconeMorphism_hom, uniqueUpToIso_inv
|
equivIsoColimit π | CompOp | 2 mathmath: equivIsoColimit_apply, equivIsoColimit_symm_apply
|
equivOfNatIsoOfIso π | CompOp | 1 mathmath: SheafOfModules.Presentation.map_relations_I
|
extendIso π | CompOp | β |
extendIsoEquiv π | CompOp | β |
homEquiv π | CompOp | 6 mathmath: homEquiv_apply, homEquiv_symm_naturality, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, ΞΉ_app_homEquiv_symm_assoc, ΞΉ_app_homEquiv_symm, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc
|
homIso π | CompOp | 1 mathmath: homIso_hom
|
homIso' π | CompOp | β |
isoUniqueCoconeMorphism π | CompOp | β |
map π | CompOp | 12 mathmath: CategoryTheory.IndParallelPairPresentation.hf, CategoryTheory.NonemptyParallelPairPresentationAux.hf, ΞΉ_map, ΞΉ_map_assoc, coconePointsIsoOfNatIso_hom_desc_assoc, coconePointsIsoOfNatIso_hom, coconePointsIsoOfNatIso_inv_desc_assoc, coconePointsIsoOfNatIso_hom_desc, coconePointsIsoOfNatIso_inv_desc, CategoryTheory.IndParallelPairPresentation.hg, coconePointsIsoOfNatIso_inv, CategoryTheory.NonemptyParallelPairPresentationAux.hg
|
mapCoconeEquiv π | CompOp | β |
mkCoconeMorphism π | CompOp | 1 mathmath: mkCoconeMorphism_desc
|
natIso π | CompOp | β |
ofCoconeEquiv π | CompOp | 2 mathmath: ofCoconeEquiv_symm_apply_desc, ofCoconeEquiv_apply_desc
|
ofCorepresentableBy π | CompOp | β |
ofExistsUnique π | CompOp | β |
ofExtendIso π | CompOp | β |
ofFaithful π | CompOp | β |
ofIsoColimit π | CompOp | 6 mathmath: equivIsoColimit_apply, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, SimplicialObject.Splitting.ofIso_isColimit', equivIsoColimit_symm_apply, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isColimit, ofIsoColimit_desc
|
ofLeftAdjoint π | CompOp | 1 mathmath: CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right
|
ofPointIso π | CompOp | β |
ofWhiskerEquivalence π | CompOp | β |
precomposeHomEquiv π | CompOp | β |
precomposeInvEquiv π | CompOp | β |
uniqueUpToIso π | CompOp | 2 mathmath: uniqueUpToIso_hom, uniqueUpToIso_inv
|
whiskerEquivalence π | CompOp | 3 mathmath: HomotopicalAlgebra.AttachCells.reindex_isColimitβ, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_isColimit, HomotopicalAlgebra.AttachCells.reindex_isColimitβ
|
whiskerEquivalenceEquiv π | CompOp | β |