Documentation Verification Report

Presentation

📁 Source: Mathlib/CategoryTheory/Limits/Presentation.lean

Statistics

MetricCount
DefinitionsPresentation, changeDiag, cocone, colimit, diag, isColimit, map, ofIso, reindex, self, ι, LimitPresentation, changeDiag, cone, diag, isLimit, limit, map, ofIso, reindex, self, π, Presentation, Presentation
24
TheoremschangeDiag_diag, changeDiag_ι, hasColimit, map_diag, map_ι, ofIso_diag, ofIso_ι, reindex_diag, reindex_ι, self_diag, self_ι, w, w_assoc, changeDiag_diag, changeDiag_π, hasLimit, map_diag, map_π, ofIso_diag, ofIso_π, reindex_diag, reindex_π, self_diag, self_π, w, w_assoc
26
Total50

Algebra

Definitions

NameCategoryTheorems
Presentation 📖CompData
1 mathmath: Presentation.exists_presentation_fin

CategoryTheory.Limits

Definitions

NameCategoryTheorems
LimitPresentation 📖CompData

CategoryTheory.Limits.ColimitPresentation

Definitions

NameCategoryTheorems
changeDiag 📖CompOp
2 mathmath: changeDiag_ι, changeDiag_diag
cocone 📖CompOp
colimit 📖CompOp
1 mathmath: CategoryTheory.ObjectProperty.ColimitOfShape.colimit_toColimitPresentation
diag 📖CompOp
20 mathmath: CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_obj, changeDiag_ι, map_diag, map_ι, self_diag, Total.Hom.w, CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj, w_assoc, Total.Hom.comp_hom, Total.Hom.w_assoc, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, reindex_ι, ofIso_ι, hasColimit, w, reindex_diag, ofIso_diag, comp_hom, id_hom, changeDiag_diag
isColimit 📖CompOp
map 📖CompOp
2 mathmath: map_diag, map_ι
ofIso 📖CompOp
3 mathmath: ofIso_ι, CategoryTheory.ObjectProperty.ColimitOfShape.ofIso_toColimitPresentation, ofIso_diag
reindex 📖CompOp
3 mathmath: reindex_ι, reindex_diag, CategoryTheory.ObjectProperty.ColimitOfShape.reindex_toColimitPresentation
self 📖CompOp
2 mathmath: self_diag, self_ι
ι 📖CompOp
12 mathmath: CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_obj, changeDiag_ι, map_ι, Total.Hom.w, w_assoc, Total.Hom.w_assoc, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, reindex_ι, ofIso_ι, w, bind_ι_app, self_ι

Theorems

NameKindAssumesProvesValidatesDepends On
changeDiag_diag 📖mathematicaldiag
changeDiag
changeDiag_ι 📖mathematicalι
changeDiag
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
diag
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
hasColimit 📖mathematicalCategoryTheory.Limits.HasColimit
diag
map_diag 📖mathematicaldiag
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.comp
map_ι 📖mathematicalι
CategoryTheory.Functor.obj
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
diag
CategoryTheory.Functor.const
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.constComp
ofIso_diag 📖mathematicaldiag
ofIso
ofIso_ι 📖mathematicalι
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
diag
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
reindex_diag 📖mathematicaldiag
reindex
CategoryTheory.Functor.comp
reindex_ι 📖mathematicalι
reindex
CategoryTheory.Functor.whiskerLeft
diag
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
self_diag 📖mathematicaldiag
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
PUnit.instCompleteBooleanAlgebra
self
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
self_ι 📖mathematicalι
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
PUnit.instCompleteBooleanAlgebra
self
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
diag
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
ι
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
diag
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Limits.LimitPresentation

Definitions

NameCategoryTheorems
changeDiag 📖CompOp
2 mathmath: changeDiag_π, changeDiag_diag
cone 📖CompOp
diag 📖CompOp
15 mathmath: hasLimit, CategoryTheory.ObjectProperty.LimitOfShape.prop_diag_obj, w, changeDiag_π, changeDiag_diag, reindex_π, reindex_diag, ofIso_π, self_diag, map_π, map_diag, ofIso_diag, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_obj, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, w_assoc
isLimit 📖CompOp
limit 📖CompOp
map 📖CompOp
2 mathmath: map_π, map_diag
ofIso 📖CompOp
3 mathmath: ofIso_π, CategoryTheory.ObjectProperty.LimitOfShape.ofIso_toLimitPresentation, ofIso_diag
reindex 📖CompOp
3 mathmath: reindex_π, reindex_diag, CategoryTheory.ObjectProperty.LimitOfShape.reindex_toLimitPresentation
self 📖CompOp
2 mathmath: self_π, self_diag
π 📖CompOp
9 mathmath: w, self_π, changeDiag_π, reindex_π, ofIso_π, map_π, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_obj, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, w_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
changeDiag_diag 📖mathematicaldiag
changeDiag
changeDiag_π 📖mathematicalπ
changeDiag
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
diag
CategoryTheory.Iso.inv
hasLimit 📖mathematicalCategoryTheory.Limits.HasLimit
diag
map_diag 📖mathematicaldiag
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.comp
map_π 📖mathematicalπ
CategoryTheory.Functor.obj
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
diag
CategoryTheory.Iso.inv
CategoryTheory.Functor.constComp
CategoryTheory.Functor.whiskerRight
ofIso_diag 📖mathematicaldiag
ofIso
ofIso_π 📖mathematicalπ
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
diag
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
reindex_diag 📖mathematicaldiag
reindex
CategoryTheory.Functor.comp
reindex_π 📖mathematicalπ
reindex
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
diag
self_diag 📖mathematicaldiag
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
PUnit.instCompleteBooleanAlgebra
self
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
self_π 📖mathematicalπ
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
PUnit.instCompleteBooleanAlgebra
self
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
diag
CategoryTheory.NatTrans.app
π
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
diag
CategoryTheory.NatTrans.app
π
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

Module

Definitions

NameCategoryTheorems
Presentation 📖CompData

SheafOfModules

Definitions

NameCategoryTheorems
Presentation 📖CompData

---

← Back to Index