Documentation

Mathlib.CategoryTheory.Limits.Presentation

(Co)limit presentations #

Let J and C be categories and X : C. We define type ColimitPresentation J X that contains the data of objects Dⱼ and natural maps sⱼ : Dⱼ ⟶ X that make X the colimit of the Dⱼ.

(See Mathlib/CategoryTheory/Presentable/ColimitPresentation.lean for the construction of a presentation of a colimit of objects that are equipped with presentations.)

Main definitions: #

TODOs: #

structure CategoryTheory.Limits.ColimitPresentation {C : Type u} [Category.{v, u} C] (J : Type w) [Category.{t, w} J] (X : C) :
Type (max (max (max t u) v) w)

A colimit presentation of X over J is a diagram {Dᵢ} in C and natural maps sᵢ : Dᵢ ⟶ X making X into the colimit of the Dᵢ.

Instances For
    theorem CategoryTheory.Limits.ColimitPresentation.w {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (pres : ColimitPresentation J X) {i j : J} (f : i j) :
    CategoryStruct.comp (pres.diag.map f) (pres.ι.app j) = pres.ι.app i
    theorem CategoryTheory.Limits.ColimitPresentation.w_assoc {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (pres : ColimitPresentation J X) {i j : J} (f : i j) {Z : C} (h : ((Functor.const J).obj X).obj j Z) :
    @[reducible, inline]

    The cocone associated to a colimit presentation.

    Equations
      Instances For

        The canonical colimit presentation of any object over a point.

        Equations
          Instances For

            If F : J ⥤ C is a functor that has a colimit, then this is the obvious colimit presentation of colimit F.

            Equations
              Instances For

                If F preserves colimits of shape J, it maps colimit presentations of X to colimit presentations of F(X).

                Equations
                  Instances For

                    If P is a colimit presentation of X, it is possible to define another colimit presentation of X where P.diag is replaced by an isomorphic functor.

                    Equations
                      Instances For

                        Map a colimit presentation under an isomorphism.

                        Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Limits.ColimitPresentation.ofIso_diag {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (P : ColimitPresentation J X) {Y : C} (e : X Y) :
                            (P.ofIso e).diag = P.diag
                            noncomputable def CategoryTheory.Limits.ColimitPresentation.reindex {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (P : ColimitPresentation J X) {J' : Type u_1} [Category.{v_1, u_1} J'] (F : Functor J' J) [F.Final] :

                            Change the index category of a colimit presentation.

                            Equations
                              Instances For
                                structure CategoryTheory.Limits.LimitPresentation {C : Type u} [Category.{v, u} C] (J : Type w) [Category.{t, w} J] (X : C) :
                                Type (max (max (max t u) v) w)

                                A limit presentation of X over J is a diagram {Dᵢ} in C and natural maps sᵢ : X ⟶ Dᵢ making X into the limit of the Dᵢ.

                                Instances For
                                  theorem CategoryTheory.Limits.LimitPresentation.w {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (pres : LimitPresentation J X) {i j : J} (f : i j) :
                                  CategoryStruct.comp (pres.π.app i) (pres.diag.map f) = pres.π.app j
                                  theorem CategoryTheory.Limits.LimitPresentation.w_assoc {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (pres : LimitPresentation J X) {i j : J} (f : i j) {Z : C} (h : pres.diag.obj j Z) :
                                  @[reducible, inline]

                                  The cone associated to a limit presentation.

                                  Equations
                                    Instances For

                                      The canonical limit presentation of any object over a point.

                                      Equations
                                        Instances For

                                          If F : J ⥤ C is a functor that has a limit, then this is the obvious limit presentation of limit F.

                                          Equations
                                            Instances For

                                              If F preserves limits of shape J, it maps limit presentations of X to limit presentations of F(X).

                                              Equations
                                                Instances For

                                                  If P is a limit presentation of X, it is possible to define another limit presentation of X where P.diag is replaced by an isomorphic functor.

                                                  Equations
                                                    Instances For

                                                      Map a limit presentation under an isomorphism.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.Limits.LimitPresentation.ofIso_diag {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (P : LimitPresentation J X) {Y : C} (e : X Y) :
                                                          (P.ofIso e).diag = P.diag
                                                          noncomputable def CategoryTheory.Limits.LimitPresentation.reindex {C : Type u} [Category.{v, u} C] {J : Type w} [Category.{t, w} J] {X : C} (P : LimitPresentation J X) {J' : Type u_1} [Category.{v_1, u_1} J'] (F : Functor J' J) [F.Initial] :

                                                          Change the index category of a limit presentation.

                                                          Equations
                                                            Instances For