Presentation of a colimit of objects equipped with a presentation #
Main definition: #
CategoryTheory.Limits.ColimitPresentation.bind: Given a colimit presentation ofXand colimit presentations of the components, this is the colimit presentation over the sigma type.
def
CategoryTheory.Limits.ColimitPresentation.Total
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
(P : (j : J) β ColimitPresentation (I j) (D.obj j))
:
Type (max u_2 u_1)
The type underlying the category used in the construction of the composition
of colimit presentations. This is simply Ξ£ j, I j but with a different category structure.
Equations
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.ColimitPresentation.Total.mk
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
(P : (j : J) β ColimitPresentation (I j) (D.obj j))
(i : J)
(k : I i)
:
Total P
Constructor for Total to guide type checking.
Equations
Instances For
structure
CategoryTheory.Limits.ColimitPresentation.Total.Hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
(k l : Total P)
:
Type (max v v_1)
Morphisms in the Total category.
The underlying morphism in the first component.
A morphism in
C.
Instances For
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.ext
{C : Type u}
{instβ : Category.{v, u} C}
{J : Type u_1}
{I : J β Type u_2}
{instβΒΉ : Category.{v_1, u_1} J}
{instβΒ² : (j : J) β Category.{u_3, u_2} (I j)}
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{k l : Total P}
{x y : k.Hom l}
(base : x.base = y.base)
(hom : x.hom = y.hom)
:
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.ext_iff
{C : Type u}
{instβ : Category.{v, u} C}
{J : Type u_1}
{I : J β Type u_2}
{instβΒΉ : Category.{v_1, u_1} J}
{instβΒ² : (j : J) β Category.{u_3, u_2} (I j)}
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{k l : Total P}
{x y : k.Hom l}
:
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.w_assoc
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{k l : Total P}
(self : k.Hom l)
{Z : C}
(h : D.obj l.fst βΆ Z)
:
CategoryStruct.comp ((P k.fst).ΞΉ.app k.snd) (CategoryStruct.comp (D.map self.base) h) = CategoryStruct.comp self.hom (CategoryStruct.comp ((P l.fst).ΞΉ.app l.snd) h)
def
CategoryTheory.Limits.ColimitPresentation.Total.Hom.comp
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{k l m : Total P}
(f : k.Hom l)
(g : l.Hom m)
:
k.Hom m
Composition of morphisms in the Total category.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.comp_base
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{k l m : Total P}
(f : k.Hom l)
(g : l.Hom m)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.Total.Hom.comp_hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{k l m : Total P}
(f : k.Hom l)
(g : l.Hom m)
:
instance
CategoryTheory.Limits.ColimitPresentation.instCategoryTotal
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
:
Equations
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.id_hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
(xβ : Total P)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.comp_hom
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{Xβ Yβ Zβ : Total P}
(f : Xβ.Hom Yβ)
(g : Yβ.Hom Zβ)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.id_base
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
(xβ : Total P)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.comp_base
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{Xβ Yβ Zβ : Total P}
(f : Xβ.Hom Yβ)
(g : Yβ.Hom Zβ)
:
instance
CategoryTheory.Limits.ColimitPresentation.instLocallySmallTotal
{C : Type u}
[Category.{v, u} C]
{J : Type u_1}
{I : J β Type u_2}
[Category.{v_1, u_1} J]
[(j : J) β Category.{u_3, u_2} (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
[LocallySmall.{w, v, u} C]
[LocallySmall.{w, v_1, u_1} J]
:
theorem
CategoryTheory.Limits.ColimitPresentation.Total.exists_hom_of_hom
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
{j j' : J}
(i : I j)
(u : j βΆ j')
[IsFiltered (I j')]
[IsFinitelyPresentable ((P j).diag.obj i)]
:
instance
CategoryTheory.Limits.ColimitPresentation.instNonemptyTotalOfIsFiltered
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
[IsFiltered J]
[β (j : J), IsFiltered (I j)]
:
instance
CategoryTheory.Limits.ColimitPresentation.instIsFilteredTotalOfIsFinitelyPresentableObjDiag
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{D : Functor J C}
{P : (j : J) β ColimitPresentation (I j) (D.obj j)}
[IsFiltered J]
[β (j : J), IsFiltered (I j)]
[β (j : J) (i : I j), IsFinitelyPresentable ((P j).diag.obj i)]
:
IsFiltered (Total P)
def
CategoryTheory.Limits.ColimitPresentation.bind
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) β ColimitPresentation (I j) (P.diag.obj j))
[β (j : J), IsFiltered (I j)]
[β (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
:
ColimitPresentation (Total Q) X
If P is a colimit presentation over J of X and for every j we are given a colimit
presentation Qβ±Ό over I j of the P.diag.obj j, this is the refined colimit presentation of X
over Total Q.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.bind_diag_map
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) β ColimitPresentation (I j) (P.diag.obj j))
[β (j : J), IsFiltered (I j)]
[β (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
{k l : Total Q}
(f : k βΆ l)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.bind_ΞΉ_app
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) β ColimitPresentation (I j) (P.diag.obj j))
[β (j : J), IsFiltered (I j)]
[β (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
(k : Total Q)
:
@[simp]
theorem
CategoryTheory.Limits.ColimitPresentation.bind_diag_obj
{C : Type u}
[Category.{v, u} C]
{J : Type w}
{I : J β Type w}
[SmallCategory J]
[(j : J) β SmallCategory (I j)]
{X : C}
(P : ColimitPresentation J X)
(Q : (j : J) β ColimitPresentation (I j) (P.diag.obj j))
[β (j : J), IsFiltered (I j)]
[β (j : J) (i : I j), IsFinitelyPresentable ((Q j).diag.obj i)]
(k : Total Q)
: