Documentation Verification Report

ColimitPresentation

📁 Source: Mathlib/CategoryTheory/Presentable/ColimitPresentation.lean

Statistics

MetricCount
DefinitionsColimitPresentation, Total, base, comp, hom, mk, bind, instCategoryTotal
8
Theoremscomp_base, comp_hom, ext, ext_iff, w, w_assoc, exists_hom_of_hom, bind_diag_map, bind_diag_obj, bind_ι_app, comp_base, comp_hom, id_base, id_hom, instIsFilteredTotalOfIsFinitelyPresentableObjDiag, instLocallySmallTotal, instNonemptyTotalOfIsFiltered
17
Total25

CategoryTheory.Limits

Definitions

NameCategoryTheorems
ColimitPresentation 📖CompData

CategoryTheory.Limits.ColimitPresentation

Definitions

NameCategoryTheorems
Total 📖CompOp
10 mathmath: bind_diag_obj, comp_base, bind_diag_map, instLocallySmallTotal, instNonemptyTotalOfIsFiltered, id_base, instIsFilteredTotalOfIsFinitelyPresentableObjDiag, comp_hom, id_hom, bind_ι_app
bind 📖CompOp
3 mathmath: bind_diag_obj, bind_diag_map, bind_ι_app
instCategoryTotal 📖CompOp
9 mathmath: bind_diag_obj, comp_base, bind_diag_map, instLocallySmallTotal, id_base, instIsFilteredTotalOfIsFinitelyPresentableObjDiag, comp_hom, id_hom, bind_ι_app

Theorems

NameKindAssumesProvesValidatesDepends On
bind_diag_map 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.IsFinitelyPresentable
CategoryTheory.Functor.obj
diag
CategoryTheory.Functor.map
Total
instCategoryTotal
bind
Total.Hom.hom
bind_diag_obj 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.IsFinitelyPresentable
CategoryTheory.Functor.obj
diag
Total
instCategoryTotal
bind
bind_ι_app 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.IsFinitelyPresentable
CategoryTheory.Functor.obj
diag
CategoryTheory.NatTrans.app
Total
instCategoryTotal
Total.Hom.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
ι
bind
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp_base 📖mathematicalTotal.Hom.base
CategoryTheory.CategoryStruct.comp
Total
CategoryTheory.Category.toCategoryStruct
instCategoryTotal
comp_hom 📖mathematicalTotal.Hom.hom
CategoryTheory.CategoryStruct.comp
Total
CategoryTheory.Category.toCategoryStruct
instCategoryTotal
CategoryTheory.Functor.obj
diag
id_base 📖mathematicalTotal.Hom.base
CategoryTheory.CategoryStruct.id
Total
CategoryTheory.Category.toCategoryStruct
instCategoryTotal
id_hom 📖mathematicalTotal.Hom.hom
CategoryTheory.CategoryStruct.id
Total
CategoryTheory.Category.toCategoryStruct
instCategoryTotal
CategoryTheory.Functor.obj
diag
instIsFilteredTotalOfIsFinitelyPresentableObjDiag 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.IsFinitelyPresentable
CategoryTheory.Functor.obj
diag
Total
instCategoryTotal
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
Total.exists_hom_of_hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
Total.Hom.w
Total.Hom.w_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.IsFiltered.coeq_condition
CategoryTheory.IsFinitelyPresentable.exists_eq_of_isColimit
Total.Hom.ext
Mathlib.Tactic.Reassoc.eq_whisker'
instNonemptyTotalOfIsFiltered
instLocallySmallTotal 📖mathematicalCategoryTheory.LocallySmall
Total
instCategoryTotal
small_of_injective
small_prod
CategoryTheory.instSmallHomOfLocallySmall
instNonemptyTotalOfIsFiltered 📖mathematicalCategoryTheory.IsFilteredTotalCategoryTheory.IsFiltered.nonempty

CategoryTheory.Limits.ColimitPresentation.Total

Definitions

NameCategoryTheorems
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hom_of_hom 📖mathematicalHom.baseCategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit

CategoryTheory.Limits.ColimitPresentation.Total.Hom

Definitions

NameCategoryTheorems
base 📖CompOp
7 mathmath: CategoryTheory.Limits.ColimitPresentation.Total.exists_hom_of_hom, CategoryTheory.Limits.ColimitPresentation.comp_base, ext_iff, w, CategoryTheory.Limits.ColimitPresentation.id_base, comp_base, w_assoc
comp 📖CompOp
2 mathmath: comp_base, comp_hom
hom 📖CompOp
8 mathmath: ext_iff, CategoryTheory.Limits.ColimitPresentation.bind_diag_map, w, comp_hom, w_assoc, CategoryTheory.Limits.ColimitPresentation.comp_hom, CategoryTheory.Limits.ColimitPresentation.id_hom, CategoryTheory.Limits.ColimitPresentation.bind_ι_app

Theorems

NameKindAssumesProvesValidatesDepends On
comp_base 📖mathematicalbase
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp_hom 📖mathematicalhom
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.ColimitPresentation.diag
ext 📖base
hom
ext_iff 📖mathematicalbase
hom
ext
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.ColimitPresentation.diag
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.ColimitPresentation.ι
CategoryTheory.Functor.map
base
hom
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.ColimitPresentation.diag
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.ColimitPresentation.ι
CategoryTheory.Functor.map
base
hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

---

← Back to Index