Documentation Verification Report

End

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/End.lean

Statistics

MetricCount
DefinitionsEnd, Cowedge, desc, ext, mk, HasCoend, HasEnd, Wedge, ext, mk, coend, desc, map, ι, coendFunctor, endFunctor, end_, map, π, multicospanIndexEnd, multicospanShapeEnd, multispanIndexCoend, multispanShapeCoend
23
Theoremshom_ext, π_desc, π_desc_assoc, condition, condition_assoc, ext_hom_hom, ext_inv_hom, mk_pt, mk_π, hom_ext, lift_ι, lift_ι_assoc, condition, condition_assoc, ext_hom_hom, ext_inv_hom, mk_pt, mk_ι, condition, condition_assoc, hom_ext, hom_ext_iff, map_comp, map_comp_assoc, map_id, ι_desc, ι_desc_assoc, ι_map, ι_map_assoc, coendFunctor_map, coendFunctor_obj, endFunctor_map, endFunctor_obj, condition, condition_assoc, hom_ext, hom_ext_iff, lift_π, lift_π_assoc, map_comp, map_comp_assoc, map_id, map_π, map_π_assoc, multicospanIndexEnd_fst, multicospanIndexEnd_left, multicospanIndexEnd_right, multicospanIndexEnd_snd, multicospanShapeEnd_L, multicospanShapeEnd_R, multicospanShapeEnd_fst, multicospanShapeEnd_snd, multispanIndexCoend_fst, multispanIndexCoend_left, multispanIndexCoend_right, multispanIndexCoend_snd, multispanShapeCoend_L, multispanShapeCoend_R, multispanShapeCoend_fst, multispanShapeCoend_snd
60
Total83

CategoryTheory

Definitions

NameCategoryTheorems
End 📖CompOp
138 mathmath: IsGrothendieckAbelian.GabrielPopescuAux.ι_d, preadditiveCoyonedaObj_map, Rep.coe_linearization_obj_ρ, additive_yonedaObj, Action.leftRegularTensorIso_inv_hom, Monoid.Foldl.ofFreeMonoid_apply, Action.ofMulAction_apply, InducedCategory.endEquiv_symm_apply_hom, InducedCategory.endEquiv_apply, FDRep.endRingEquiv_symm_comp_ρ, PreGaloisCategory.endEquivSectionsFibers_π, Preadditive.homSelfLinearEquivEndMulOpposite_apply, Iso.refl_conj, preadditiveYonedaObj_obj_carrier, Traversable.foldlm.ofFreeMonoid_comp_of, Action.rightDual_ρ, Rep.linearization_single, Iso.conj_pow, End.mul_def, ModuleCat.endRingEquiv_symm_apply_hom, IsGrothendieckAbelian.GabrielPopescu.full, IsFreeGroupoid.SpanningTree.endIsFree, End.smul_left, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_map, Rep.ρ_hom, HomOrthogonal.matrixDecomposition_id, Action.FunctorCategoryEquivalence.functor_map_app, ModuleCat.smul_naturality, ContinuousCohomology.I_obj_ρ_apply, Aut.toEnd_apply, preadditiveYoneda_obj, preadditiveYonedaMap_app, isSeparator_iff_faithful_preadditiveCoyonedaObj, ContinuousCohomology.Iobj_ρ_apply, isUnit_iff_isIso, Functor.map_conj, IsGrothendieckAbelian.GabrielPopescuAux.exists_d_comp_eq_d, Abelian.full_comp_preadditiveCoyonedaObj, preadditiveYonedaObj_obj_isModule, Action.tensorUnit_ρ, Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj', FDRep.hom_hom_action_ρ, Functor.mapAction_obj_ρ_apply, Action.FintypeCat.toEndHom_apply, IsGrothendieckAbelian.GabrielPopescu.preservesInjectiveObjects, SingleObj.functor_map, SingleObj.toEnd_def, HomOrthogonal.matrixDecompositionLinearEquiv_symm_apply, preservesFiniteColimits_preadditiveYonedaObj_of_injective, Action.FunctorCategoryEquivalence.inverse_obj_ρ_apply, Functor.FullyFaithful.mulEquivEnd_symm_apply, Projective.projective_iff_preservesEpimorphisms_preadditiveCoyonedaObj, HomOrthogonal.matrixDecompositionLinearEquiv_apply, ModuleCat.smulNatTrans_apply_app, preservesFiniteColimits_preadditiveCoyonedaObj_of_projective, Units.toAut_hom, Traversable.foldl.unop_ofFreeMonoid, Action.leftRegularTensorIso_hom_hom, preservesHomology_preadditiveCoyonedaObj_of_projective, HomOrthogonal.matrixDecomposition_comp, Action.FintypeCat.quotientToEndHom_mk, PreGaloisCategory.FibreFunctor.end_isUnit, Monoid.foldlM.ofFreeMonoid_apply, preservesLimits_preadditiveYonedaObj, Action.res_map_hom, Rep.linearization_obj_ρ, FGModuleCat.Iso.conj_eq_conj, ModuleCat.HasColimit.coconePointSMul_apply, Action.ρ_self_inv_apply, Rep.linearizationTrivialIso_inv_hom, Action.ρ_one, Action.ρAut_apply_hom, End.smul_right, Action.trivial_ρ, Action.Hom.comm_assoc, preservesHomology_preadditiveYonedaObj_of_injective, SemimoduleCat.Iso.conj_eq_conj, HomOrthogonal.matrixDecompositionAddEquiv_symm_apply, ModuleCat.mkOfSMul_smul, preadditiveYonedaObj_obj_isAddCommGroup, IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, Iso.symm_self_conj, PreGaloisCategory.endEquivAutGalois_mul, Functor.mapEnd_apply, Action.res_obj_ρ, Preadditive.homSelfLinearEquivEndMulOpposite_symm_apply, End.one_def, isCoseparator_iff_faithful_preadditiveYonedaObj, Rep.ofHom_ρ, Action.FunctorCategoryEquivalence.inverse_map_hom, Rep.Action_ρ_eq_ρ, Abelian.preadditiveCoyonedaObj_map_surjective, Iso.self_symm_conj, Units.toAut_inv, IsFreeGroupoid.endIsFreeOfConnectedFree, Iso.conjAut_hom, ModuleCat.Iso.conj_eq_conj, Traversable.foldl.ofFreeMonoid_comp_of, Iso.conj_id, ActionCategory.stabilizerIsoEnd_apply, Action.tensor_ρ, IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, Iso.trans_conj, FDRep.of_ρ, PreGaloisCategory.endEquivAutGalois_π, Action.isContinuous_def, Functor.mapAction_map_hom, IsGrothendieckAbelian.GabrielPopescu.preservesFiniteLimits, Functor.FullyFaithful.mulEquivEnd_apply, preadditiveCoyonedaObj_obj_carrier, Action.leftDual_ρ, HomOrthogonal.matrixDecompositionAddEquiv_apply, Iso.conj_comp, preadditiveCoyonedaObj_obj_isModule, Action.Iso.conj_ρ, preservesLimits_preadditiveCoyonedaObj, ModuleCat.endRingEquiv_apply, Rep.linearizationTrivialIso_hom_hom, additive_coyonedaObj, IsGrothendieckAbelian.GabrielPopescuAux.ι_d_assoc, Rep.ihom_obj_ρ, instNontrivialEndOfSimple, FGModuleCat.Iso.conj_hom_eq_conj, Action.FunctorCategoryEquivalence.functor_obj_map, Action.ρAut_apply_inv, Action.Hom.comm, Action.ρ_inv_self_apply, preadditiveCoyoneda_obj, preadditiveCoyonedaObj_obj_isAddCommGroup, Iso.conj_apply, FDRep.hom_action_ρ, PreGaloisCategory.endMulEquivAutGalois_pi, ActionCategory.stabilizerIsoEnd_symm_apply, FDRep.endRingEquiv_comp_ρ, IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, Action.FintypeCat.toEndHom_trivial_of_mem, Action.FintypeCat.ofMulAction_apply, preadditiveYonedaObj_map

CategoryTheory.Limits

Definitions

NameCategoryTheorems
Cowedge 📖CompOp
2 mathmath: Cowedge.ext_hom_hom, Cowedge.ext_inv_hom
HasCoend 📖MathDef
HasEnd 📖MathDef
Wedge 📖CompOp
2 mathmath: Wedge.ext_hom_hom, Wedge.ext_inv_hom
coend 📖CompOp
11 mathmath: coend.map_id, coend.condition, coend.map_comp_assoc, coend.condition_assoc, coendFunctor_obj, coend.ι_desc, coend.map_comp, coend.ι_map, coend.hom_ext_iff, coend.ι_map_assoc, coend.ι_desc_assoc
coendFunctor 📖CompOp
2 mathmath: coendFunctor_obj, coendFunctor_map
endFunctor 📖CompOp
2 mathmath: endFunctor_obj, endFunctor_map
end_ 📖CompOp
13 mathmath: end_.map_π, end_.condition, endFunctor_obj, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π_assoc, end_.map_id, end_.hom_ext_iff, end_.map_comp, end_.lift_π, end_.map_comp_assoc, end_.map_π_assoc, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π, end_.lift_π_assoc, end_.condition_assoc
multicospanIndexEnd 📖CompOp
12 mathmath: multicospanIndexEnd_fst, Wedge.mk_pt, Wedge.mk_ι, multicospanIndexEnd_snd, multicospanIndexEnd_right, Wedge.IsLimit.lift_ι, Wedge.ext_hom_hom, Wedge.condition, Wedge.IsLimit.lift_ι_assoc, Wedge.ext_inv_hom, multicospanIndexEnd_left, Wedge.condition_assoc
multicospanShapeEnd 📖CompOp
16 mathmath: multicospanShapeEnd_L, multicospanIndexEnd_fst, Wedge.mk_pt, Wedge.mk_ι, multicospanIndexEnd_snd, multicospanIndexEnd_right, multicospanShapeEnd_snd, Wedge.IsLimit.lift_ι, Wedge.ext_hom_hom, multicospanShapeEnd_fst, Wedge.condition, Wedge.IsLimit.lift_ι_assoc, multicospanShapeEnd_R, Wedge.ext_inv_hom, multicospanIndexEnd_left, Wedge.condition_assoc
multispanIndexCoend 📖CompOp
12 mathmath: multispanIndexCoend_right, Cowedge.IsColimit.π_desc_assoc, Cowedge.IsColimit.π_desc, Cowedge.condition_assoc, multispanIndexCoend_snd, Cowedge.ext_hom_hom, Cowedge.mk_pt, multispanIndexCoend_left, Cowedge.mk_π, Cowedge.ext_inv_hom, multispanIndexCoend_fst, Cowedge.condition
multispanShapeCoend 📖CompOp
16 mathmath: multispanIndexCoend_right, Cowedge.IsColimit.π_desc_assoc, multispanShapeCoend_snd, Cowedge.IsColimit.π_desc, Cowedge.condition_assoc, multispanIndexCoend_snd, Cowedge.ext_hom_hom, Cowedge.mk_pt, multispanIndexCoend_left, Cowedge.mk_π, multispanShapeCoend_fst, Cowedge.ext_inv_hom, multispanShapeCoend_L, multispanIndexCoend_fst, multispanShapeCoend_R, Cowedge.condition

Theorems

NameKindAssumesProvesValidatesDepends On
coendFunctor_map 📖mathematicalHasCoendCategoryTheory.Functor.map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
coendFunctor
coend.map
coendFunctor_obj 📖mathematicalHasCoendCategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
coendFunctor
coend
endFunctor_map 📖mathematicalHasEndCategoryTheory.Functor.map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
endFunctor
end_.map
endFunctor_obj 📖mathematicalHasEndCategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
endFunctor
end_
multicospanIndexEnd_fst 📖mathematicalMulticospanIndex.fst
multicospanShapeEnd
multicospanIndexEnd
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Functor.id
MulticospanShape.fst
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
multicospanIndexEnd_left 📖mathematicalMulticospanIndex.left
multicospanShapeEnd
multicospanIndexEnd
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
multicospanIndexEnd_right 📖mathematicalMulticospanIndex.right
multicospanShapeEnd
multicospanIndexEnd
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
multicospanIndexEnd_snd 📖mathematicalMulticospanIndex.snd
multicospanShapeEnd
multicospanIndexEnd
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
multicospanShapeEnd_L 📖mathematicalMulticospanShape.L
multicospanShapeEnd
multicospanShapeEnd_R 📖mathematicalMulticospanShape.R
multicospanShapeEnd
CategoryTheory.Arrow
multicospanShapeEnd_fst 📖mathematicalMulticospanShape.fst
multicospanShapeEnd
CategoryTheory.Comma.left
CategoryTheory.Functor.id
multicospanShapeEnd_snd 📖mathematicalMulticospanShape.snd
multicospanShapeEnd
CategoryTheory.Comma.right
CategoryTheory.Functor.id
multispanIndexCoend_fst 📖mathematicalMultispanIndex.fst
multispanShapeCoend
multispanIndexCoend
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
multispanIndexCoend_left 📖mathematicalMultispanIndex.left
multispanShapeCoend
multispanIndexCoend
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
multispanIndexCoend_right 📖mathematicalMultispanIndex.right
multispanShapeCoend
multispanIndexCoend
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
multispanIndexCoend_snd 📖mathematicalMultispanIndex.snd
multispanShapeCoend
multispanIndexCoend
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
MultispanShape.snd
CategoryTheory.Comma.hom
multispanShapeCoend_L 📖mathematicalMultispanShape.L
multispanShapeCoend
CategoryTheory.Arrow
multispanShapeCoend_R 📖mathematicalMultispanShape.R
multispanShapeCoend
multispanShapeCoend_fst 📖mathematicalMultispanShape.fst
multispanShapeCoend
CategoryTheory.Comma.left
CategoryTheory.Functor.id
multispanShapeCoend_snd 📖mathematicalMultispanShape.snd
multispanShapeCoend
CategoryTheory.Comma.right
CategoryTheory.Functor.id

CategoryTheory.Limits.Cowedge

Definitions

NameCategoryTheorems
ext 📖CompOp
2 mathmath: ext_hom_hom, ext_inv_hom
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.Multicofork.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
ext_hom_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cowedge
CategoryTheory.Limits.Cocone.category
ext
CategoryTheory.Limits.Cocone.pt
ext_inv_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cowedge
CategoryTheory.Limits.Cocone.category
ext
CategoryTheory.Limits.Cocone.pt
mk_pt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.multispanIndexCoend
mk_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.multispanIndexCoend

CategoryTheory.Limits.Cowedge.IsColimit

Definitions

NameCategoryTheorems
desc 📖CompOp
2 mathmath: π_desc_assoc, π_desc

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.Multicofork.IsColimit.hom_ext
π_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.Multicofork.π
desc
CategoryTheory.Limits.IsColimit.fac
π_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.multispanShapeCoend
CategoryTheory.Limits.multispanIndexCoend
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.Multicofork.π
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_desc

CategoryTheory.Limits.Wedge

Definitions

NameCategoryTheorems
ext 📖CompOp
2 mathmath: ext_hom_hom, ext_inv_hom
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Multifork.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
ext_hom_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
CategoryTheory.Iso.hom
CategoryTheory.Limits.Wedge
CategoryTheory.Limits.Cone.category
ext
CategoryTheory.Limits.Cone.pt
ext_inv_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
CategoryTheory.Iso.inv
CategoryTheory.Limits.Wedge
CategoryTheory.Limits.Cone.category
ext
CategoryTheory.Limits.Cone.pt
mk_pt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
mk_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.multicospanIndexEnd

CategoryTheory.Limits.Wedge.IsLimit

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Limits.Multifork.IsLimit.hom_ext
lift_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
CategoryTheory.Limits.MulticospanIndex.left
lift
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Limits.IsLimit.fac
lift_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.multicospanShapeEnd
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.Limits.multicospanIndexEnd
lift
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_ι

CategoryTheory.Limits.coend

Definitions

NameCategoryTheorems
desc 📖CompOp
2 mathmath: ι_desc, ι_desc_assoc
map 📖CompOp
6 mathmath: map_id, map_comp_assoc, map_comp, ι_map, ι_map_assoc, CategoryTheory.Limits.coendFunctor_map
ι 📖CompOp
7 mathmath: condition, condition_assoc, ι_desc, ι_map, hom_ext_iff, ι_map_assoc, ι_desc_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.coend
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
ι
CategoryTheory.Limits.Cowedge.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.coend
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.coend
ι
CategoryTheory.Limits.Multicoequalizer.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.coend
ι
hom_ext
map_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coend
map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
hom_ext
ι_map_assoc
ι_map
CategoryTheory.Category.assoc
map_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coend
map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp
map_id 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coend
hom_ext
ι_map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
ι_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.coend
ι
desc
CategoryTheory.Limits.IsColimit.fac
ι_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.coend
ι
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_desc
ι_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.coend
ι
map
CategoryTheory.NatTrans.app
ι_desc
ι_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Limits.coend
ι
map
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_map

CategoryTheory.Limits.end_

Definitions

NameCategoryTheorems
map 📖CompOp
6 mathmath: map_π, map_id, map_comp, map_comp_assoc, map_π_assoc, CategoryTheory.Limits.endFunctor_map
π 📖CompOp
11 mathmath: map_π, CategoryTheory.Enriched.FunctorCategory.enrichedId_π_assoc, condition, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π_assoc, hom_ext_iff, lift_π, map_π_assoc, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π, CategoryTheory.Enriched.FunctorCategory.enrichedId_π, lift_π_assoc, condition_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
π
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Wedge.condition
condition_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
π
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
π
CategoryTheory.Limits.Multiequalizer.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
π
hom_ext
lift_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.end_
lift
π
CategoryTheory.Limits.IsLimit.fac
lift_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.end_
lift
π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_π
map_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
hom_ext
CategoryTheory.Category.assoc
map_π
map_π_assoc
map_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
map
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp
map_id 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
hom_ext
map_π
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
map
π
CategoryTheory.NatTrans.app
lift_π
map_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.end_
map
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
π
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_π

---

← Back to Index