Documentation Verification Report

Equifibered

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/Pullback/Equifibered.lean

Statistics

MetricCount
DefinitionsCoequifibered, Equifibered
2
Theoremscomp, of_discrete, of_isIso, op, rightOp, unop, whiskerLeft, whiskerRight, Coequifibered_of_isIso, comp, of_discrete, of_isIso, op, rightOp, unop, whiskerLeft, whiskerRight, coequifibered_op_iff, coequifibered_unop_iff, equifibered_of_discrete, equifibered_of_isIso, equifibered_op_iff, equifibered_unop_iff, instIsMultiplicativeFunctorCoequifibered, instIsMultiplicativeFunctorEquifibered, instRespectsIsoFunctorCoequifibered, instRespectsIsoFunctorEquifibered, mapPair_equifibered
28
Total30

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
mapPair_equifibered 📖mathematicalNatTrans.Equifibered
Discrete
discreteCategory
NatTrans.Equifibered.of_discrete

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
Coequifibered 📖CompOp
16 mathmath: Equifibered.rightOp, AlgebraicGeometry.Scheme.Hom.coequifibered_normalizationDiagramMap, instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, AlgebraicGeometry.Scheme.AffineZariskiSite.coequifibered_iff_forall_isLocalizationAway, equifibered_op_iff, AlgebraicGeometry.Scheme.Hom.preservesLocalization_normalizationDiagramMap, Coequifibered_of_isIso, coequifibered_op_iff, Coequifibered.of_isIso, instRespectsIsoFunctorCoequifibered, equifibered_unop_iff, coequifibered_unop_iff, Equifibered.unop, Equifibered.op, instIsMultiplicativeFunctorCoequifibered, AlgebraicGeometry.Scheme.preservesLocalization_toOpensFunctor
Equifibered 📖CompOp
17 mathmath: equifibered_of_isIso, Equifibered.of_isIso, instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, equifibered_of_discrete, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.equifibered, Equifibered.of_discrete, equifibered_op_iff, coequifibered_op_iff, Coequifibered.op, equifibered_unop_iff, Coequifibered.rightOp, coequifibered_unop_iff, Coequifibered.unop, Coequifibered.of_discrete, instIsMultiplicativeFunctorEquifibered, instRespectsIsoFunctorEquifibered, CategoryTheory.mapPair_equifibered

Theorems

NameKindAssumesProvesValidatesDepends On
Coequifibered_of_isIso 📖mathematicalCoequifiberedCoequifibered.of_isIso
coequifibered_op_iff 📖mathematicalCoequifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
Equifibered
Coequifibered.unop
Equifibered.op
coequifibered_unop_iff 📖mathematicalCoequifibered
CategoryTheory.Functor.unop
unop
Equifibered
Opposite
CategoryTheory.Category.opposite
Coequifibered.op
Equifibered.unop
equifibered_of_discrete 📖mathematicalEquifibered
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Equifibered.of_discrete
equifibered_of_isIso 📖mathematicalEquifiberedEquifibered.of_isIso
equifibered_op_iff 📖mathematicalEquifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
Coequifibered
Equifibered.unop
Coequifibered.op
equifibered_unop_iff 📖mathematicalEquifibered
CategoryTheory.Functor.unop
unop
Coequifibered
Opposite
CategoryTheory.Category.opposite
Equifibered.op
Coequifibered.unop
instIsMultiplicativeFunctorCoequifibered 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.Functor
CategoryTheory.Functor.category
Coequifibered
Coequifibered.of_isIso
CategoryTheory.IsIso.id
Coequifibered.comp
instIsMultiplicativeFunctorEquifibered 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
CategoryTheory.Functor
CategoryTheory.Functor.category
Equifibered
Equifibered.of_isIso
CategoryTheory.IsIso.id
Equifibered.comp
instRespectsIsoFunctorCoequifibered 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
Coequifibered
CategoryTheory.MorphismProperty.respectsIso_of_isStableUnderComposition
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeFunctorCoequifibered
Coequifibered.of_isIso
instRespectsIsoFunctorEquifibered 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
Equifibered
CategoryTheory.MorphismProperty.respectsIso_of_isStableUnderComposition
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeFunctorEquifibered
Equifibered.of_isIso

CategoryTheory.NatTrans.Coequifibered

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.NatTrans.CoequifiberedCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.IsPushout.paste_vert
of_discrete 📖mathematicalCategoryTheory.NatTrans.Equifibered
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor_map_id
CategoryTheory.IsPullback.of_horiz_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
of_isIso 📖mathematicalCategoryTheory.NatTrans.CoequifiberedCategoryTheory.IsPushout.of_vert_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatTrans.naturality
op 📖mathematicalCategoryTheory.NatTrans.CoequifiberedCategoryTheory.NatTrans.Equifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.NatTrans.op
CategoryTheory.IsPushout.op
rightOp 📖mathematicalCategoryTheory.NatTrans.Coequifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.NatTrans.Equifibered
CategoryTheory.Functor.rightOp
CategoryTheory.NatTrans.rightOp
CategoryTheory.IsPushout.op
unop 📖mathematicalCategoryTheory.NatTrans.Coequifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.NatTrans.Equifibered
CategoryTheory.Functor.unop
CategoryTheory.NatTrans.unop
CategoryTheory.IsPushout.unop
whiskerLeft 📖mathematicalCategoryTheory.NatTrans.CoequifiberedCategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
whiskerRight 📖mathematicalCategoryTheory.NatTrans.Coequifibered
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.IsPushout.map

CategoryTheory.NatTrans.Equifibered

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.NatTrans.EquifiberedCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.IsPullback.paste_vert
of_discrete 📖mathematicalCategoryTheory.NatTrans.Equifibered
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor_map_id
CategoryTheory.IsPullback.of_horiz_isIso
CategoryTheory.IsIso.id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
of_isIso 📖mathematicalCategoryTheory.NatTrans.EquifiberedCategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatTrans.naturality
op 📖mathematicalCategoryTheory.NatTrans.EquifiberedCategoryTheory.NatTrans.Coequifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.NatTrans.op
CategoryTheory.IsPullback.op
rightOp 📖mathematicalCategoryTheory.NatTrans.Equifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.NatTrans.Coequifibered
CategoryTheory.Functor.rightOp
CategoryTheory.NatTrans.rightOp
CategoryTheory.IsPullback.op
unop 📖mathematicalCategoryTheory.NatTrans.Equifibered
Opposite
CategoryTheory.Category.opposite
CategoryTheory.NatTrans.Coequifibered
CategoryTheory.Functor.unop
CategoryTheory.NatTrans.unop
CategoryTheory.IsPullback.unop
whiskerLeft 📖mathematicalCategoryTheory.NatTrans.EquifiberedCategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
whiskerRight 📖mathematicalCategoryTheory.NatTrans.Equifibered
CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.IsPullback.map

---

← Back to Index