Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Equifibered

Equifibered natural transformation #

Main definition #

F(X) → F(Y)
 ↓      ↓
G(X) → G(Y)

A natural transformation is equifibered if every commutative square of the following form is a pullback.

F(X) → F(Y)
 ↓      ↓
G(X) → G(Y)
Equations
    Instances For
      @[deprecated CategoryTheory.NatTrans.Equifibered.of_isIso (since := "2026-02-01")]

      Alias of CategoryTheory.NatTrans.Equifibered.of_isIso.

      theorem CategoryTheory.NatTrans.Equifibered.comp {J : Type u_1} {C : Type u_3} [Category.{v_1, u_1} J] [Category.{v_2, u_3} C] {F G H : Functor J C} {α : F G} {β : G H} ( : Equifibered α) ( : Equifibered β) :
      theorem CategoryTheory.NatTrans.Equifibered.whiskerRight {J : Type u_1} {C : Type u_3} {D : Type u_4} [Category.{v_1, u_1} J] [Category.{v_2, u_3} C] [Category.{v_4, u_4} D] {F G : Functor J C} {α : F G} ( : Equifibered α) (H : Functor C D) [∀ (i j : J) (f : j i), Limits.PreservesLimit (Limits.cospan (α.app i) (G.map f)) H] :
      @[deprecated CategoryTheory.NatTrans.Equifibered.of_discrete (since := "2026-01-23")]
      theorem CategoryTheory.mapPair_equifibered {C : Type u_3} {ι : Type u_5} [Category.{v_2, u_3} C] {F G : Functor (Discrete ι) C} (α : F G) :

      Alias of CategoryTheory.NatTrans.Equifibered.of_discrete.

      @[deprecated CategoryTheory.NatTrans.Equifibered.of_discrete (since := "2026-01-23")]
      theorem CategoryTheory.NatTrans.equifibered_of_discrete {C : Type u_3} {ι : Type u_5} [Category.{v_2, u_3} C] {F G : Functor (Discrete ι) C} (α : F G) :

      Alias of CategoryTheory.NatTrans.Equifibered.of_discrete.

      A natural transformation is co-equifibered if every commutative square of the following form is a pushout.

      F(X) → F(Y)
       ↓      ↓
      G(X) → G(Y)
      
      Equations
        Instances For
          @[deprecated CategoryTheory.NatTrans.Coequifibered.of_isIso (since := "2026-02-01")]

          Alias of CategoryTheory.NatTrans.Coequifibered.of_isIso.

          theorem CategoryTheory.NatTrans.Coequifibered.whiskerRight {J : Type u_1} {C : Type u_3} {D : Type u_4} [Category.{v_1, u_1} J] [Category.{v_2, u_3} C] [Category.{v_4, u_4} D] {F G : Functor J C} {α : F G} ( : Coequifibered α) (H : Functor C D) [∀ (i j : J) (f : j i), Limits.PreservesColimit (Limits.span (F.map f) (α.app j)) H] :