Documentation Verification Report

WidePullbacks

๐Ÿ“ Source: Mathlib/CategoryTheory/Limits/Shapes/WidePullbacks.lean

Statistics

MetricCount
DefinitionsHasWidePullback, HasWidePullbacks, HasWidePushout, HasWidePushouts, base, ฯ€, WidePullbackCone, mk, base, ext, mk, reindex, reindexIsLimitEquiv, ฯ€, WidePullbackShape, inhabited, category, diagramIsoWideCospan, equivalenceOfEquiv, evalCasesBash, functorExt, instDecidableEqHom, decEq, mkCone, struct, uliftEquivalence, wideCospan, desc, head, ฮน, WidePushoutShape, inhabited, category, diagramIsoWideSpan, equivalenceOfEquiv, evalCasesBash', instDecidableEqHom, decEq, mkCocone, struct, uliftEquivalence, wideSpan, instInhabitedWidePullbackShape, instInhabitedWidePushoutShape, widePullback, widePullbackShapeOp, widePullbackShapeOpEquiv, widePullbackShapeOpMap, widePullbackShapeOpUnop, widePullbackShapeUnop, widePullbackShapeUnopOp, widePushout, widePushoutShapeOp, widePushoutShapeOpEquiv, widePushoutShapeOpMap, widePushoutShapeOpUnop, widePushoutShapeUnop, widePushoutShapeUnopOp
58
Theoremseq_lift_of_comp_eq, hom_eq_lift, hom_ext, hom_ext_iff, lift_base, lift_base_assoc, lift_ฯ€, lift_ฯ€_assoc, ฯ€_arrow, ฯ€_arrow_assoc, hom_ext, lift_base, lift_base_assoc, lift_ฯ€, lift_ฯ€_assoc, condition, condition_assoc, mk_base, mk_pt, mk_ฯ€, reindex_base, reindex_pt, reindex_ฯ€, equivalenceOfEquiv_functor_map_term, equivalenceOfEquiv_functor_obj_none, equivalenceOfEquiv_functor_obj_some, functorExt_hom_app, functorExt_inv_app, hom_id, mkCone_pt, mkCone_ฯ€_app, subsingleton_hom, wideCospan_map, wideCospan_obj, arrow_ฮน, arrow_ฮน_assoc, eq_desc_of_comp_eq, head_desc, head_desc_assoc, hom_eq_desc, hom_ext, hom_ext_iff, ฮน_desc, ฮน_desc_assoc, hom_id, mkCocone_pt, mkCocone_ฮน_app, subsingleton_hom, wideSpan_map, wideSpan_obj, hasWidePullbacks_shrink, hasWidePushouts_shrink, widePullbackShapeOpEquiv_counitIso, widePullbackShapeOpEquiv_functor, widePullbackShapeOpEquiv_inverse, widePullbackShapeOpEquiv_unitIso, widePullbackShapeOp_map, widePullbackShapeOp_obj, widePullbackShapeUnop_map, widePullbackShapeUnop_obj, widePushoutShapeOpEquiv_counitIso, widePushoutShapeOpEquiv_functor, widePushoutShapeOpEquiv_inverse, widePushoutShapeOpEquiv_unitIso, widePushoutShapeOp_map, widePushoutShapeOp_obj, widePushoutShapeUnop_map, widePushoutShapeUnop_obj
68
Total126

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasWidePullback ๐Ÿ“–MathDef
3 mathmath: hasWidePullback_of_isTerminal, CategoryTheory.CechNerveTerminalFrom.hasWidePullback', CategoryTheory.CechNerveTerminalFrom.hasWidePullback
HasWidePullbacks ๐Ÿ“–MathDefโ€”
HasWidePushout ๐Ÿ“–MathDefโ€”
HasWidePushouts ๐Ÿ“–MathDefโ€”
WidePullbackCone ๐Ÿ“–CompOpโ€”
WidePullbackShape ๐Ÿ“–CompOp
82 mathmath: CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, walkingSpanOpEquiv_inverse_map, widePushoutShapeUnop_obj, widePushoutShapeOpEquiv_functor, widePushoutShapeOpEquiv_inverse, widePullbackShapeUnop_map, WidePullbackCone.reindex_pt, WidePullbackShape.functorExt_hom_app, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, CategoryTheory.Subobject.wideCospan_map_term, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, walkingCospanOpEquiv_counitIso_hom_app, widePullbackShapeOpEquiv_inverse, walkingCospanOpEquiv_counitIso_inv_app, walkingCospanOpEquiv_inverse_obj, walkingSpanOpEquiv_inverse_obj, WidePullbackCone.IsLimit.lift_base, walkingCospanOpEquiv_unitIso_inv_app, opSpan_hom_app, widePushoutShapeOp_map, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, walkingSpanOpEquiv_counitIso_hom_app, WidePullbackShape.wideCospan_obj, WidePullbackShape.hom_id, WidePullbackShape.equivalenceOfEquiv_functor_map_term, CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan, hasLimitsOfShape_widePullbackShape, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, WidePullbackShape.equivalenceOfEquiv_functor_obj_some, widePushoutShapeOp_obj, WidePullbackCone.mk_pt, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, WidePullbackCone.IsLimit.lift_ฯ€_assoc, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, WidePullbackCone.condition_assoc, walkingSpanOpEquiv_unitIso_inv_app, WidePullbackCone.IsLimit.lift_base_assoc, CategoryTheory.widePullbackShape_connected, widePullbackShapeOp_obj, WidePullbackCone.IsLimit.lift_ฯ€, widePushoutShapeOpEquiv_counitIso, walkingCospanOpEquiv_functor_map, CategoryTheory.WithTerminal.widePullbackShapeEquiv_inverse_obj, walkingCospanOpEquiv_functor_obj, walkingSpanOpEquiv_functor_map, widePullbackShapeUnop_obj, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, widePullbackShapeOpEquiv_functor, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.top_mem_range, widePushoutShapeUnop_map, WidePullbackShape.functorExt_inv_app, HasFiniteWidePullbacks.out, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Subobject.leInfCone_ฯ€_app_none, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, walkingSpanOpEquiv_functor_obj, CategoryTheory.Over.ConstructProducts.conesEquivInverse_obj, walkingSpanOpEquiv_unitIso_hom_app, WidePullbackShape.wideCospan_map, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_ฯ€_app, CategoryTheory.instIsConnectedWidePullbackShape, WidePullbackShape.equivalenceOfEquiv_functor_obj_none, walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, walkingCospanOpEquiv_unitIso_hom_app, opSpan_inv_app, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi, WidePullbackShape.subsingleton_hom, widePullbackShapeOpEquiv_counitIso, widePushoutShapeOpEquiv_unitIso, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_ฯ€_app, widePullbackShapeOp_map, CategoryTheory.WithTerminal.widePullbackShapeEquiv_functor_obj, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, WidePullbackCone.condition, walkingCospanOpEquiv_inverse_map, widePullbackShapeOpEquiv_unitIso
WidePushoutShape ๐Ÿ“–CompOp
42 mathmath: walkingSpanOpEquiv_inverse_map, widePushoutShapeUnop_obj, widePushoutShapeOpEquiv_functor, widePushoutShapeOpEquiv_inverse, widePullbackShapeUnop_map, hasColimitsOfShape_widePushoutShape, walkingCospanOpEquiv_counitIso_hom_app, widePullbackShapeOpEquiv_inverse, walkingCospanOpEquiv_counitIso_inv_app, walkingCospanOpEquiv_inverse_obj, walkingSpanOpEquiv_inverse_obj, walkingCospanOpEquiv_unitIso_inv_app, CategoryTheory.instIsConnectedWidePushoutShape, widePushoutShapeOp_map, walkingSpanOpEquiv_counitIso_hom_app, opCospan_hom_app, WidePushoutShape.hom_id, widePushoutShapeOp_obj, walkingSpanOpEquiv_unitIso_inv_app, opCospan_inv_app, widePullbackShapeOp_obj, WidePushoutShape.wideSpan_map, widePushoutShapeOpEquiv_counitIso, walkingCospanOpEquiv_functor_map, walkingCospanOpEquiv_functor_obj, walkingSpanOpEquiv_functor_map, widePullbackShapeUnop_obj, widePullbackShapeOpEquiv_functor, widePushoutShapeUnop_map, WidePushoutShape.subsingleton_hom, walkingSpanOpEquiv_functor_obj, CategoryTheory.widePushoutShape_connected, WidePushoutShape.wideSpan_obj, walkingSpanOpEquiv_unitIso_hom_app, walkingSpanOpEquiv_counitIso_inv_app, walkingCospanOpEquiv_unitIso_hom_app, widePullbackShapeOpEquiv_counitIso, widePushoutShapeOpEquiv_unitIso, HasFiniteWidePushouts.out, widePullbackShapeOp_map, walkingCospanOpEquiv_inverse_map, widePullbackShapeOpEquiv_unitIso
instInhabitedWidePullbackShape ๐Ÿ“–CompOpโ€”
instInhabitedWidePushoutShape ๐Ÿ“–CompOpโ€”
widePullback ๐Ÿ“–CompOp
14 mathmath: WidePullback.lift_base_assoc, WidePullback.ฯ€_arrow, CategoryTheory.Arrow.cechNerve_obj, WidePullback.hom_ext_iff, WidePullback.lift_base, WidePullback.ฯ€_arrow_assoc, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_ฯ€_0, WidePullback.hom_eq_lift, CategoryTheory.Arrow.cechNerve_map, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_map, WidePullback.lift_ฯ€_assoc, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_obj, WidePullback.lift_ฯ€
widePullbackShapeOp ๐Ÿ“–CompOp
8 mathmath: widePushoutShapeOpEquiv_inverse, walkingSpanOpEquiv_counitIso_hom_app, walkingSpanOpEquiv_unitIso_inv_app, widePullbackShapeOp_obj, walkingSpanOpEquiv_unitIso_hom_app, walkingSpanOpEquiv_counitIso_inv_app, widePushoutShapeOpEquiv_unitIso, widePullbackShapeOp_map
widePullbackShapeOpEquiv ๐Ÿ“–CompOp
4 mathmath: widePullbackShapeOpEquiv_inverse, widePullbackShapeOpEquiv_functor, widePullbackShapeOpEquiv_counitIso, widePullbackShapeOpEquiv_unitIso
widePullbackShapeOpMap ๐Ÿ“–CompOp
4 mathmath: walkingSpanOpEquiv_inverse_map, widePullbackShapeUnop_map, walkingCospanOpEquiv_functor_map, widePullbackShapeOp_map
widePullbackShapeOpUnop ๐Ÿ“–CompOp
1 mathmath: widePullbackShapeOpEquiv_unitIso
widePullbackShapeUnop ๐Ÿ“–CompOp
8 mathmath: widePullbackShapeUnop_map, walkingCospanOpEquiv_counitIso_hom_app, walkingCospanOpEquiv_counitIso_inv_app, walkingCospanOpEquiv_unitIso_inv_app, widePullbackShapeUnop_obj, widePullbackShapeOpEquiv_functor, walkingCospanOpEquiv_unitIso_hom_app, widePullbackShapeOpEquiv_unitIso
widePullbackShapeUnopOp ๐Ÿ“–CompOp
1 mathmath: widePushoutShapeOpEquiv_counitIso
widePushout ๐Ÿ“–CompOp
13 mathmath: WidePushout.arrow_ฮน, WidePushout.ฮน_desc_assoc, WidePushout.hom_eq_desc, WidePushout.head_desc_assoc, WidePushout.hom_ext_iff, Concrete.widePushout_exists_rep', Concrete.widePushout_exists_rep, WidePushout.head_desc, CategoryTheory.Arrow.cechConerve_map, CategoryTheory.Arrow.cechConerve_obj, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right, WidePushout.ฮน_desc, WidePushout.arrow_ฮน_assoc
widePushoutShapeOp ๐Ÿ“–CompOp
8 mathmath: walkingCospanOpEquiv_counitIso_hom_app, widePullbackShapeOpEquiv_inverse, walkingCospanOpEquiv_counitIso_inv_app, walkingCospanOpEquiv_unitIso_inv_app, widePushoutShapeOp_map, widePushoutShapeOp_obj, walkingCospanOpEquiv_unitIso_hom_app, widePullbackShapeOpEquiv_unitIso
widePushoutShapeOpEquiv ๐Ÿ“–CompOp
4 mathmath: widePushoutShapeOpEquiv_functor, widePushoutShapeOpEquiv_inverse, widePushoutShapeOpEquiv_counitIso, widePushoutShapeOpEquiv_unitIso
widePushoutShapeOpMap ๐Ÿ“–CompOp
4 mathmath: widePushoutShapeOp_map, walkingSpanOpEquiv_functor_map, widePushoutShapeUnop_map, walkingCospanOpEquiv_inverse_map
widePushoutShapeOpUnop ๐Ÿ“–CompOp
1 mathmath: widePushoutShapeOpEquiv_unitIso
widePushoutShapeUnop ๐Ÿ“–CompOp
8 mathmath: widePushoutShapeUnop_obj, widePushoutShapeOpEquiv_functor, walkingSpanOpEquiv_counitIso_hom_app, walkingSpanOpEquiv_unitIso_inv_app, widePushoutShapeUnop_map, walkingSpanOpEquiv_unitIso_hom_app, walkingSpanOpEquiv_counitIso_inv_app, widePushoutShapeOpEquiv_unitIso
widePushoutShapeUnopOp ๐Ÿ“–CompOp
1 mathmath: widePullbackShapeOpEquiv_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
hasWidePullbacks_shrink ๐Ÿ“–โ€”HasWidePullbacksโ€”โ€”hasLimitsOfShape_of_equivalence
hasWidePushouts_shrink ๐Ÿ“–โ€”HasWidePushoutsโ€”โ€”hasColimitsOfShape_of_equivalence
widePullbackShapeOpEquiv_counitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.counitIso
Opposite
WidePullbackShape
WidePushoutShape
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape.category
widePullbackShapeOpEquiv
widePushoutShapeUnopOp
โ€”โ€”
widePullbackShapeOpEquiv_functor ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.functor
Opposite
WidePullbackShape
WidePushoutShape
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape.category
widePullbackShapeOpEquiv
widePullbackShapeUnop
โ€”โ€”
widePullbackShapeOpEquiv_inverse ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.inverse
Opposite
WidePullbackShape
WidePushoutShape
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape.category
widePullbackShapeOpEquiv
widePushoutShapeOp
โ€”โ€”
widePullbackShapeOpEquiv_unitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.unitIso
Opposite
WidePullbackShape
WidePushoutShape
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape.category
widePullbackShapeOpEquiv
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
widePullbackShapeUnop
widePushoutShapeOp
CategoryTheory.Functor.id
widePullbackShapeOpUnop
โ€”โ€”
widePullbackShapeOp_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
WidePullbackShape
WidePullbackShape.category
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
widePullbackShapeOp
widePullbackShapeOpMap
โ€”โ€”
widePullbackShapeOp_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
WidePullbackShape
WidePullbackShape.category
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
widePullbackShapeOp
Opposite.op
โ€”โ€”
widePullbackShapeUnop_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape
WidePushoutShape.category
widePullbackShapeUnop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
widePullbackShapeOpMap
Opposite.unop
โ€”โ€”
widePullbackShapeUnop_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
WidePushoutShape
WidePushoutShape.category
widePullbackShapeUnop
Opposite.unop
โ€”โ€”
widePushoutShapeOpEquiv_counitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.counitIso
Opposite
WidePushoutShape
WidePullbackShape
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape.category
widePushoutShapeOpEquiv
widePullbackShapeUnopOp
โ€”โ€”
widePushoutShapeOpEquiv_functor ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.functor
Opposite
WidePushoutShape
WidePullbackShape
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape.category
widePushoutShapeOpEquiv
widePushoutShapeUnop
โ€”โ€”
widePushoutShapeOpEquiv_inverse ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.inverse
Opposite
WidePushoutShape
WidePullbackShape
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape.category
widePushoutShapeOpEquiv
widePullbackShapeOp
โ€”โ€”
widePushoutShapeOpEquiv_unitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.unitIso
Opposite
WidePushoutShape
WidePullbackShape
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape.category
widePushoutShapeOpEquiv
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
widePushoutShapeUnop
widePullbackShapeOp
CategoryTheory.Functor.id
widePushoutShapeOpUnop
โ€”โ€”
widePushoutShapeOp_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
WidePushoutShape
WidePushoutShape.category
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
widePushoutShapeOp
widePushoutShapeOpMap
โ€”โ€”
widePushoutShapeOp_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
WidePushoutShape
WidePushoutShape.category
Opposite
WidePullbackShape
CategoryTheory.Category.opposite
WidePullbackShape.category
widePushoutShapeOp
Opposite.op
โ€”โ€”
widePushoutShapeUnop_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape
WidePullbackShape.category
widePushoutShapeUnop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
widePushoutShapeOpMap
Opposite.unop
โ€”โ€”
widePushoutShapeUnop_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
Opposite
WidePushoutShape
CategoryTheory.Category.opposite
WidePushoutShape.category
WidePullbackShape
WidePullbackShape.category
widePushoutShapeUnop
Opposite.unop
โ€”โ€”

CategoryTheory.Limits.WidePullback

Definitions

NameCategoryTheorems
base ๐Ÿ“–CompOp
14 mathmath: CategoryTheory.Arrow.augmentedCechNerve_hom_app, CategoryTheory.Arrow.mapCechNerve_app, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_base, lift_base_assoc, ฯ€_arrow, hom_ext_iff, lift_base, ฯ€_arrow_assoc, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_ฯ€_0, hom_eq_lift, CategoryTheory.Arrow.cechNerve_map, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_map, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_hom_app
ฯ€ ๐Ÿ“–CompOp
17 mathmath: CategoryTheory.Arrow.mapCechNerve_app, ฯ€_arrow, hom_ext_iff, ฯ€_arrow_assoc, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_ฯ€_0, hom_eq_lift, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_ฯ€_succ, CategoryTheory.Arrow.cechNerve_map, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_map, lift_ฯ€_assoc, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi, lift_ฯ€

Theorems

NameKindAssumesProvesValidatesDepends On
eq_lift_of_comp_eq ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
ฯ€
base
liftโ€”CategoryTheory.Limits.IsLimit.uniq
hom_eq_lift ๐Ÿ“–mathematicalโ€”lift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
base
ฯ€
โ€”CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Limits.limit.lift_ฯ€
hom_ext ๐Ÿ“–โ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
ฯ€
base
โ€”โ€”CategoryTheory.Limits.limit.hom_ext
hom_ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
ฯ€
base
โ€”hom_ext
lift_base ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
lift
base
โ€”CategoryTheory.Limits.limit.lift_ฯ€
lift_base_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
lift
base
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_base
lift_ฯ€ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
lift
ฯ€
โ€”CategoryTheory.Limits.limit.lift_ฯ€
lift_ฯ€_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
lift
ฯ€
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_ฯ€
ฯ€_arrow ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
ฯ€
base
โ€”CategoryTheory.Limits.limit.w
ฯ€_arrow_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePullback
ฯ€
base
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ฯ€_arrow

CategoryTheory.Limits.WidePullbackCone

Definitions

NameCategoryTheorems
base ๐Ÿ“–CompOp
6 mathmath: reindex_base, IsLimit.lift_base, condition_assoc, IsLimit.lift_base_assoc, mk_base, condition
ext ๐Ÿ“–CompOpโ€”
mk ๐Ÿ“–CompOpโ€”
reindex ๐Ÿ“–CompOp
3 mathmath: reindex_pt, reindex_base, reindex_ฯ€
reindexIsLimitEquiv ๐Ÿ“–CompOpโ€”
ฯ€ ๐Ÿ“–CompOp
6 mathmath: IsLimit.lift_ฯ€_assoc, condition_assoc, reindex_ฯ€, mk_ฯ€, IsLimit.lift_ฯ€, condition

Theorems

NameKindAssumesProvesValidatesDepends On
condition ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
ฯ€
base
โ€”CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality
condition_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
ฯ€
base
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
condition
mk_base ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
baseโ€”โ€”
mk_pt ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
โ€”โ€”
mk_ฯ€ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ฯ€โ€”โ€”
reindex_base ๐Ÿ“–mathematicalโ€”base
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reindex
โ€”โ€”
reindex_pt ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reindex
โ€”โ€”
reindex_ฯ€ ๐Ÿ“–mathematicalโ€”ฯ€
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reindex
โ€”โ€”

CategoryTheory.Limits.WidePullbackCone.IsLimit

Definitions

NameCategoryTheorems
mk ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext ๐Ÿ“–โ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
CategoryTheory.Limits.WidePullbackCone.base
CategoryTheory.Limits.WidePullbackCone.ฯ€
โ€”โ€”CategoryTheory.Limits.IsLimit.hom_ext
lift_base ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
lift
CategoryTheory.Limits.WidePullbackCone.base
โ€”CategoryTheory.Limits.IsLimit.fac
lift_base_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
lift
CategoryTheory.Limits.WidePullbackCone.base
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_base
lift_ฯ€ ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
lift
CategoryTheory.Limits.WidePullbackCone.ฯ€
โ€”CategoryTheory.Limits.IsLimit.fac
lift_ฯ€_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WidePullbackShape.wideCospan
lift
CategoryTheory.Limits.WidePullbackCone.ฯ€
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_ฯ€

CategoryTheory.Limits.WidePullbackShape

Definitions

NameCategoryTheorems
category ๐Ÿ“–CompOp
427 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, TopCat.isInducing_pullback_to_prod, CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.Over.ฮผ_pullback_left_snd', AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right', TopCat.pullbackIsoProdSubtype_hom_fst, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl', CategoryTheory.regularTopology.EqualizerCondition.bijective_mapToEqualizer_pullback', CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, CategoryTheory.Limits.diagramIsoCospan_inv_app, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_snd_assoc, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_map, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr, CategoryTheory.Limits.widePushoutShapeUnop_obj, CategoryTheory.Limits.widePushoutShapeOpEquiv_functor, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_preservesPullback_of_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right', CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_snd, CategoryTheory.Limits.pullbackFstFstIso_hom, prodIsoPullback_inv_fst, CategoryTheory.Limits.pullbackConeOfLeftIso_ฯ€_app_left, CategoryTheory.Abelian.epi_pullback_of_epi_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, CategoryTheory.Abelian.epi_fst_of_factor_thru_epi_mono_factorization, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_ฯ†, CategoryTheory.Limits.widePushoutShapeOpEquiv_inverse, CategoryTheory.Functor.preservesLimit_cospan_of_mem_presieve, CategoryTheory.Limits.Types.range_pullbackFst, CategoryTheory.Limits.cospanExt_app_one, CategoryTheory.Over.monObjMkPullbackSnd_mul, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_fst, TopCat.snd_isOpenEmbedding_of_left, CategoryTheory.Limits.widePullbackShapeUnop_map, CategoryTheory.Limits.PullbackCone.ฯ€_app_right, CategoryTheory.Limits.PushoutCocone.unop_ฯ€_app, CategoryTheory.Over.grpObjMkPullbackSnd_one, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Over.grpObjMkPullbackSnd_mul, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_ฯ†, CategoryTheory.Limits.PullbackCone.condition, CategoryTheory.Limits.Types.pullbackIsoPullback_hom_fst, CategoryTheory.IsPullback.isLimit', CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst_assoc, CategoryTheory.Limits.WidePullbackCone.reindex_pt, functorExt_hom_app, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, CategoryTheory.Subobject.wideCospan_map_term, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_snd, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_pullback_to_base_isOpenImmersion, CompHausLike.pullback.isLimit_lift, CategoryTheory.Limits.PullbackCone.unop_inl, CategoryTheory.Over.isCommMonObj_mk_pullbackSnd, TopCat.pullback_topology, CategoryTheory.Limits.PullbackCone.mk_ฯ€_app, AlgebraicGeometry.Scheme.Pullback.gluedLift_p1, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst, prodIsoPullback_inv_fst_assoc, CategoryTheory.Limits.PullbackCone.op_pt, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ฮน_snd, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, CategoryTheory.Limits.pullbackConeOfLeftIso_ฯ€_app_right, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_fst, CategoryTheory.Limits.pullbackObjIso_inv_comp_fst_assoc, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_apply_fst, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ฮน_fst, CategoryTheory.Limits.pullbackConeOfLeftIso_snd, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_hom_app, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_fst_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.Limits.PullbackCone.condition_assoc, CategoryTheory.Over.preservesTerminalIso_pullback, CategoryTheory.Limits.PullbackCone.unop_inr, CategoryTheory.Limits.spanOp_hom_app, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left, CategoryTheory.Limits.widePullbackShapeOpEquiv_inverse, TopCat.fst_iso_of_right_embedding_range_subset, CategoryTheory.Limits.PullbackCone.combine_ฯ€_app, CategoryTheory.Abelian.Pseudoelement.pseudo_pullback, CategoryTheory.PreGaloisCategory.FiberFunctor.preservesPullbacks, CategoryTheory.Limits.equalizerPullbackMapIso_hom_fst_assoc, CategoryTheory.Limits.pullback.comp_diagonal_assoc, TopCat.pullbackIsoProdSubtype_inv_fst_assoc, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, CategoryTheory.Limits.PullbackCone.op_inr, prodIsoPullback_hom_fst_assoc, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_inv_app, AlgebraicGeometry.IsOpenImmersion.instฯ€WalkingCospanSchemeCospanOne, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_right, CategoryTheory.Limits.PullbackCone.op_ฮน_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst, CategoryTheory.Limits.diagramIsoCospan_hom_app, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_snd, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, AlgebraicGeometry.Scheme.Pullback.gluedLift_p2, CategoryTheory.Limits.cospan_left, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_obj, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeLocallyRingedSpaceWalkingCospanCospanForgetToLocallyRingedSpace, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_obj, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base, CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map, CategoryTheory.Limits.cospanExt_app_right, TopCat.range_pullback_map, CategoryTheory.Subobject.pullback_obj, CategoryTheory.Limits.pullback_lift_diagonal_isPullback, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_inv_app, CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, CategoryTheory.Limits.cospan_map_inr, CategoryTheory.Limits.cospanCompIso_inv_app_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CategoryTheory.ShortComplex.SnakeInput.lift_ฯ†โ‚‚, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, CategoryTheory.Limits.Cone.ofPullbackCone_pt, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackToBaseIsOpenImmersion, CategoryTheory.Limits.spanOp_inv_app, CategoryTheory.Limits.cospan_map_inl, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Limits.PullbackCone.isIso_fst_of_mono_of_isLimit, CategoryTheory.Limits.Types.pullbackLimitCone_cone, CategoryTheory.Limits.Cone.ofPullbackCone_ฯ€, CategoryTheory.Limits.pullbackConeOfRightIso_ฯ€_app_right, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop_1, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right, CategoryTheory.Limits.PullbackCone.snd_limit_cone, CategoryTheory.Limits.PullbackCone.mk_ฯ€_app_right, CategoryTheory.Limits.opSpan_hom_app, CategoryTheory.Limits.widePushoutShapeOp_map, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd_assoc, CategoryTheory.Over.ฮผ_pullback_left_fst_snd', CategoryTheory.Limits.pullbackConeOfRightIso_fst, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_forgetPreserves_of_right, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Limits.pullbackConeOfRightIso_x, CategoryTheory.Limits.PullbackCone.mk_ฯ€_app_one, TopCat.Sheaf.interUnionPullbackConeLift_right, CategoryTheory.Limits.preservesPullback_symmetry, CategoryTheory.Limits.hasLimit_cospan_of_hasLimit_pair_of_hasLimit_parallelPair, CategoryTheory.IsPullback.of_isLimit, TopCat.fst_isEmbedding_of_right, CategoryTheory.Limits.isPullback_map_snd_snd, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_hom_app, CategoryTheory.Abelian.epi_snd_of_isLimit, TopCat.isOpenEmbedding_of_pullback, CategoryTheory.Limits.opCospan_hom_app, wideCospan_obj, equivalenceOfEquiv_functor_map_term, CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_apply_snd, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_snd, CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape, CategoryTheory.Limits.PullbackCone.ฯ€_app_left, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Square.isPullback_iff, TopCat.pullbackIsoProdSubtype_inv_snd_apply, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, equivalenceOfEquiv_functor_obj_some, CategoryTheory.Limits.widePushoutShapeOp_obj, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.Limits.WidePullbackCone.mk_pt, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpace_forgetPreserves_of_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, TopCat.pullbackIsoProdSubtype_inv_fst, CategoryTheory.Limits.cospanCompIso_inv_app_right, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_ฯ€_assoc, CategoryTheory.Limits.PullbackCone.eta_inv_hom, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftLift_fst, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_snd_fst_assoc, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, CategoryTheory.Limits.PushoutCocone.op_ฯ€_app, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi_assoc, CategoryTheory.Limits.WidePullbackCone.condition_assoc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToTop_preservesPullback_of_left, CategoryTheory.Over.closedUnderLimitsOfShape_pullback, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_inv_app, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base_assoc, CategoryTheory.Limits.opCospan_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_preservesPullback_of_left, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left, TopCat.pullbackIsoProdSubtype_hom_snd, CategoryTheory.Limits.cospanExt_inv_app_one, CategoryTheory.Limits.PullbackCone.unop_ฮน_app, CategoryTheory.Limits.Types.pullbackIsoPullback_hom_snd, CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd, CategoryTheory.Limits.pullbackConeOfLeftIso_ฯ€_app_none, CategoryTheory.Over.ฮผ_pullback_left_fst_fst', TopCat.snd_iso_of_left_embedding_range_subset, CategoryTheory.Limits.pullbackObjIso_hom_comp_fst, CategoryTheory.widePullbackShape_connected, CategoryTheory.Limits.cospanOp_hom_app, CategoryTheory.Over.ฮผ_pullback_left_fst_snd, CategoryTheory.Over.monObjMkPullbackSnd_one, TopCat.pullbackIsoProdSubtype_inv_snd, CategoryTheory.ShortComplex.SnakeInput.lift_ฯ†โ‚‚_assoc, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Limits.widePullbackShapeOp_obj, CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst_assoc, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_ฯ€, CategoryTheory.Limits.PreservesPullback.of_iso_comparison, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst, prodIsoPullback_hom_snd, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right, CategoryTheory.Regular.instHasCoequalizerFstSnd, CategoryTheory.Limits.cospan_right, CategoryTheory.Limits.cospanExt_app_left, TopCat.range_pullback_to_prod, TopCat.Sheaf.interUnionPullbackConeLift_left, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst, TopCat.pullback_fst_image_snd_preimage, CategoryTheory.Limits.widePushoutShapeOpEquiv_counitIso, CompHausLike.instPreservesLimitTopCatWalkingCospanCospanCompHausLikeToTop, CategoryTheory.Limits.CompleteLattice.pullback_eq_inf, CategoryTheory.Abelian.epi_pullback_of_epi_g, prodIsoPullback_hom_snd_assoc, CategoryTheory.Limits.pullbackConeOfRightIso_ฯ€_app_left, CategoryTheory.Limits.pullbackConeOfLeftIso_x, CategoryTheory.Limits.walkingCospanOpEquiv_functor_map, CompHausLike.pullback.cone_ฯ€, TopCat.pullbackIsoProdSubtype_inv_fst_apply, CategoryTheory.Limits.pullbackObjIso_hom_comp_fst_assoc, CategoryTheory.WithTerminal.widePullbackShapeEquiv_inverse_obj, CategoryTheory.Over.tensorHom_left_fst, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeSndIsOpenImmersion, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_fst, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd_assoc, CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso, CategoryTheory.Limits.pullback.comp_diagonal, CategoryTheory.Limits.cospanExt_hom_app_one, CategoryTheory.Limits.cospan_map_id, CategoryTheory.Limits.walkingCospanOpEquiv_functor_obj, CategoryTheory.Over.tensorHom_left_fst_assoc, prodIsoPullback_hom_fst, CategoryTheory.Limits.walkingSpanOpEquiv_functor_map, CategoryTheory.Limits.PullbackCone.eta_hom_hom, CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr', AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, CategoryTheory.Over.ฮท_pullback_left, CategoryTheory.Limits.PullbackCone.mk_pt, CategoryTheory.Limits.cospanCompIso_inv_app_one, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, CategoryTheory.Limits.widePullbackShapeUnop_obj, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left, CategoryTheory.Limits.PullbackCone.ofCone_ฯ€, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeWalkingCospanCospanForget_1, CategoryTheory.Limits.pullbackObjIso_inv_comp_fst, CategoryTheory.Limits.PullbackCone.op_inl, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd, CategoryTheory.Limits.equalizerPullbackMapIso_hom_snd, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_snd, CategoryTheory.Limits.PullbackCone.flip_pt, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_fst, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_fst_apply, CategoryTheory.Limits.cospanCompIso_hom_app_left, CategoryTheory.Limits.equalizerPullbackMapIso_hom_fst, TopCat.isEmbedding_pullback_to_prod, CategoryTheory.MonoOver.pullback_obj_left, TopCat.pullbackIsoProdSubtype_hom_apply, CategoryTheory.Limits.CoproductDisjoint.nonempty_isInitial_of_ne, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst_assoc, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ฮน_snd_assoc, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullback_cone_of_left_condition, CategoryTheory.Limits.FormalCoproduct.pullbackCone_fst_f, CategoryTheory.Limits.pullback.diagonal_comp, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Limits.pullbackObjIso_hom_comp_snd_assoc, CategoryTheory.Limits.widePullbackShapeOpEquiv_functor, CategoryTheory.MorphismProperty.diagonal_iff, CategoryTheory.Limits.Types.range_pullbackSnd, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.top_mem_range, CompHausLike.instHasLimitWalkingCospanCospan, TopCat.fst_isOpenEmbedding_of_right, CategoryTheory.Limits.cospanCompIso_hom_app_one, CategoryTheory.Limits.pullback_diagonal_map_snd_snd_fst, prodIsoPullback_inv_snd, CategoryTheory.Limits.PullbackCone.combine_pt_map, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop, CategoryTheory.NormalMonoCategory.pullback_of_mono, CategoryTheory.Limits.PullbackCone.unop_pt, TopCat.pullbackIsoProdSubtype_inv_snd_assoc, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_fst_assoc, CategoryTheory.Limits.widePushoutShapeUnop_map, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forget_preservesLimitsOfRight, CategoryTheory.Limits.PullbackCone.combine_pt_obj, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forget_preservesLimitsOfLeft, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_left, CategoryTheory.Limits.PushoutCocone.op_pt, functorExt_inv_app, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_reflectsPullback_of_left, CategoryTheory.Limits.HasFiniteWidePullbacks.out, CategoryTheory.Limits.FormalCoproduct.pullbackCone_condition, CategoryTheory.regularTopology.equalizerCondition_w, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.pullback_to_base_isOpenImmersion, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Limits.pullbackConeOfRightIso_ฯ€_app_none, TopCat.pullback_map_isOpenEmbedding, CategoryTheory.Over.ฮผ_pullback_left_snd, CategoryTheory.Limits.Types.pullbackLimitCone_isLimit, CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_right, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_snd_assoc, CategoryTheory.Limits.cospanExt_inv_app_left, CategoryTheory.Subobject.leInfCone_ฯ€_app_none, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.Functor.PreservesPairwisePullbacks.preservesLimit, CategoryTheory.Limits.pullbackObjIso_inv_comp_snd_assoc, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_inv_comp_pi_assoc, CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd_assoc, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, TopCat.pullback_map_isEmbedding, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_snd_assoc, CategoryTheory.Over.ฮผ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Limits.cospanOp_inv_app, CategoryTheory.Limits.cospanCompIso_hom_app_right, CategoryTheory.Limits.diagonalObjPullbackFstIso_hom_fst_fst, CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst_assoc, CategoryTheory.Limits.PullbackCone.isIso_snd_of_mono_of_isLimit, CategoryTheory.Limits.cospanCompIso_app_one, CategoryTheory.Limits.walkingSpanOpEquiv_functor_obj, CategoryTheory.Abelian.epi_fst_of_isLimit, CategoryTheory.MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong, CompHausLike.instPreservesLimitWalkingCospanCospanToCompHausLike, CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso_1, CategoryTheory.Over.ConstructProducts.conesEquivInverse_obj, CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst_assoc, CategoryTheory.Limits.cospanCompIso_app_left, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Limits.PushoutCocone.unop_pt, CategoryTheory.Presieve.uncurry_pullbackArrows, prodIsoPullback_inv_snd_assoc, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_hom_app, wideCospan_map, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_ฯ€_app, CategoryTheory.Over.lift_left, CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd_assoc, CategoryTheory.instIsConnectedWidePullbackShape, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeWalkingCospanCospanForget, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, equivalenceOfEquiv_functor_obj_none, CategoryTheory.Limits.pullback_map_eq_pullbackFstFstIso_inv, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.mono_iff_isIso_fst, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, AlgebraicGeometry.Scheme.Pullback.forget_comparison_surjective, CategoryTheory.Limits.PullbackCone.ofCone_pt, CategoryTheory.Limits.PullbackCone.mk_ฯ€_app_left, CategoryTheory.Limits.diagonalObjPullbackFstIso_inv_fst_snd, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Over.isMonHom_pullbackFst_id_right, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.Over.tensorObj_left, CategoryTheory.mono_iff_isIso_snd, CategoryTheory.Limits.equalizerPullbackMapIso_inv_ฮน_fst_assoc, CategoryTheory.Limits.Types.pullbackIsoPullback_inv_snd_apply, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_hom_app, CategoryTheory.Limits.PullbackCone.mono_snd_of_is_pullback_of_mono, TopCat.pullback_snd_range, CategoryTheory.Limits.opSpan_inv_app, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', TopCat.snd_isEmbedding_of_left, CategoryTheory.Limits.pullbackObjIso_inv_comp_snd, CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc, CategoryTheory.Limits.cospanExt_inv_app_right, CategoryTheory.Over.ฮต_pullback_left, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_reflectsPullback_of_right, CategoryTheory.Limits.pullback_fst_map_snd_isPullback, AlgebraicGeometry.Scheme.pullbackComparison_forget_surjective, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeLocallyRingedSpaceWalkingCospanCospanForgetToLocallyRingedSpace_1, CategoryTheory.Limits.cospanExt_hom_app_right, AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left', CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd, CategoryTheory.CechNerveTerminalFrom.wideCospan.limitIsoPi_hom_comp_pi, CategoryTheory.Limits.pullbackFstFstIso_inv, SSet.instFinitePullback, TopCat.pullback_fst_range, CategoryTheory.Limits.cospanExt_hom_app_left, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_f, CategoryTheory.Limits.widePullbackShapeOpEquiv_counitIso, CategoryTheory.Limits.cospan_one, CategoryTheory.Limits.diagonal_pullback_fst, AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace, TopCat.pullback_snd_image_fst_preimage, CategoryTheory.Limits.pullback_lift_map_isPullback, CategoryTheory.Limits.widePushoutShapeOpEquiv_unitIso, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_ฯ€_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.instSndPullbackConeOfLeft, CategoryTheory.Limits.widePullbackShapeOp_map, CategoryTheory.WithTerminal.widePullbackShapeEquiv_functor_obj, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Limits.FormalCoproduct.pullbackCone_snd_ฯ†, CategoryTheory.Limits.WidePullbackCone.condition, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_map, CategoryTheory.Over.tensorObj_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Limits.FormalCoproduct.isPullback, CategoryTheory.Limits.cospanCompIso_app_right, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CompHausLike.pullback.cone_pt, CategoryTheory.Limits.PullbackCone.fst_limit_cone, CategoryTheory.Limits.pullbackObjIso_hom_comp_snd, TopCat.isEmbedding_of_pullback, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Limits.pullback_equalizer, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_preservesPullbackOfLeft, CategoryTheory.Limits.widePullbackShapeOpEquiv_unitIso, CategoryTheory.Regular.instMonoDesc, AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forget_preservesPullback_of_right
diagramIsoWideCospan ๐Ÿ“–CompOpโ€”
equivalenceOfEquiv ๐Ÿ“–CompOp
3 mathmath: equivalenceOfEquiv_functor_map_term, equivalenceOfEquiv_functor_obj_some, equivalenceOfEquiv_functor_obj_none
evalCasesBash ๐Ÿ“–CompOpโ€”
functorExt ๐Ÿ“–CompOp
2 mathmath: functorExt_hom_app, functorExt_inv_app
instDecidableEqHom ๐Ÿ“–CompOpโ€”
mkCone ๐Ÿ“–CompOp
2 mathmath: mkCone_ฯ€_app, mkCone_pt
struct ๐Ÿ“–CompOp
3 mathmath: hom_id, CategoryTheory.Limits.WalkingCospan.instSubsingletonHom, subsingleton_hom
uliftEquivalence ๐Ÿ“–CompOpโ€”
wideCospan ๐Ÿ“–CompOp
10 mathmath: CategoryTheory.Limits.WidePullbackCone.reindex_pt, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base, wideCospan_obj, CategoryTheory.Limits.WidePullbackCone.mk_pt, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_ฯ€_assoc, CategoryTheory.Limits.WidePullbackCone.condition_assoc, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base_assoc, CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_ฯ€, wideCospan_map, CategoryTheory.Limits.WidePullbackCone.condition

Theorems

NameKindAssumesProvesValidatesDepends On
equivalenceOfEquiv_functor_map_term ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Equivalence.functor
equivalenceOfEquiv
Hom.term
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
โ€”โ€”
equivalenceOfEquiv_functor_obj_none ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Equivalence.functor
equivalenceOfEquiv
โ€”โ€”
equivalenceOfEquiv_functor_obj_some ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Equivalence.functor
equivalenceOfEquiv
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
โ€”โ€”
functorExt_hom_app ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
functorExt
CategoryTheory.Functor.obj
CategoryTheory.Iso
โ€”โ€”
functorExt_inv_app ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
functorExt
CategoryTheory.Functor.obj
CategoryTheory.Iso
โ€”โ€”
hom_id ๐Ÿ“–mathematicalโ€”Hom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.WidePullbackShape
struct
โ€”โ€”
mkCone_pt ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Functor.map
Hom.term
CategoryTheory.Limits.Cone.pt
mkCone
โ€”โ€”
mkCone_ฯ€_app ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePullbackShape
category
CategoryTheory.Functor.map
Hom.term
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.ฯ€
mkCone
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
โ€”โ€”
subsingleton_hom ๐Ÿ“–mathematicalโ€”Quiver.IsThin
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.CategoryStruct.toQuiver
struct
โ€”โ€”
wideCospan_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Limits.WidePullbackShape
category
wideCospan
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”โ€”
wideCospan_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePullbackShape
category
wideCospan
โ€”โ€”

CategoryTheory.Limits.WidePullbackShape.Hom

Definitions

NameCategoryTheorems
inhabited ๐Ÿ“–CompOpโ€”

CategoryTheory.Limits.WidePullbackShape.instDecidableEqHom

Definitions

NameCategoryTheorems
decEq ๐Ÿ“–CompOpโ€”

CategoryTheory.Limits.WidePushout

Definitions

NameCategoryTheorems
desc ๐Ÿ“–CompOp
9 mathmath: ฮน_desc_assoc, hom_eq_desc, head_desc_assoc, eq_desc_of_comp_eq, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, head_desc, CategoryTheory.Arrow.cechConerve_map, ฮน_desc
head ๐Ÿ“–CompOp
10 mathmath: arrow_ฮน, hom_eq_desc, head_desc_assoc, hom_ext_iff, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.Limits.Concrete.widePushout_exists_rep, head_desc, CategoryTheory.Arrow.cechConerve_map, CategoryTheory.Arrow.augmentedCechConerve_hom_app, arrow_ฮน_assoc
ฮน ๐Ÿ“–CompOp
11 mathmath: arrow_ฮน, ฮน_desc_assoc, hom_eq_desc, hom_ext_iff, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.Limits.Concrete.widePushout_exists_rep', CategoryTheory.Limits.Concrete.widePushout_exists_rep, CategoryTheory.Arrow.cechConerve_map, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right, ฮน_desc, arrow_ฮน_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_ฮน ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
head
โ€”CategoryTheory.Limits.colimit.w
arrow_ฮน_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
head
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
arrow_ฮน
eq_desc_of_comp_eq ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
head
descโ€”CategoryTheory.Limits.IsColimit.uniq
head_desc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
head
desc
โ€”CategoryTheory.Limits.colimit.ฮน_desc
head_desc_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
head
desc
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
head_desc
hom_eq_desc ๐Ÿ“–mathematicalโ€”desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
head
ฮน
โ€”CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.colimit.ฮน_desc
hom_ext ๐Ÿ“–โ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
head
โ€”โ€”CategoryTheory.Limits.colimit.hom_ext
hom_ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
head
โ€”hom_ext
ฮน_desc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
desc
โ€”CategoryTheory.Limits.colimit.ฮน_desc
ฮน_desc_assoc ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
ฮน
desc
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ฮน_desc

CategoryTheory.Limits.WidePushoutShape

Definitions

NameCategoryTheorems
category ๐Ÿ“–CompOp
201 mathmath: CategoryTheory.Limits.spanCompIso_app_left, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ฮน_app_right, CategoryTheory.Limits.PushoutCocone.flip_pt, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_map, CategoryTheory.Limits.widePushoutShapeUnop_obj, CategoryTheory.Limits.widePushoutShapeOpEquiv_functor, CommRingCat.pushoutCocone_pt, CategoryTheory.Limits.spanCompIso_inv_app_zero, CategoryTheory.Limits.widePushoutShapeOpEquiv_inverse, CategoryTheory.Limits.PushoutCocone.mk_ฮน_app_zero, CategoryTheory.Limits.PushoutCocone.inl_colimit_cocone, CategoryTheory.Limits.widePullbackShapeUnop_map, inl_coprodIsoPushout_hom, CategoryTheory.Limits.PushoutCocone.unop_ฯ€_app, CategoryTheory.Limits.inl_comp_pushoutObjIso_hom, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, CategoryTheory.Limits.PushoutCocone.condition_assoc, CategoryTheory.Limits.span_map_id, CategoryTheory.Limits.PushoutCocone.op_snd, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape, CategoryTheory.Limits.PullbackCone.op_pt, CategoryTheory.Limits.span_right, CategoryTheory.Limits.inr_comp_pushoutObjIso_hom_assoc, CategoryTheory.Limits.PushoutCocone.epi_inl_of_is_pushout_of_epi, CategoryTheory.IsPushout.isColimit', CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_hom_app, CommRingCat.Under.preservesFiniteLimits_of_flat, CategoryTheory.Limits.hasColimit_span_of_hasColimit_pair_of_hasColimit_parallelPair, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Limits.spanCompIso_hom_app_zero, CategoryTheory.Limits.PushoutCocone.condition, CategoryTheory.Limits.spanOp_hom_app, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Limits.widePullbackShapeOpEquiv_inverse, CategoryTheory.Limits.spanExt_hom_app_right, CategoryTheory.Limits.spanCompIso_inv_app_left, CategoryTheory.Limits.Types.instMonoPushoutInl, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_inv_app, CategoryTheory.Limits.PullbackCone.op_ฮน_app, CategoryTheory.Limits.span_map_snd, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_obj, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_obj, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_inv_app, CategoryTheory.Limits.spanCompIso_app_zero, CategoryTheory.Limits.PushoutCocone.ofCocone_ฮน, CategoryTheory.Limits.spanExt_hom_app_zero, CommRingCat.HomTopology.isEmbedding_pushout, CategoryTheory.instIsConnectedWidePushoutShape, CategoryTheory.Limits.spanOp_inv_app, CategoryTheory.Limits.PushoutCocone.eta_inv_hom, inr_coprodIsoPushout_hom_assoc, CategoryTheory.Limits.opSpan_hom_app, CategoryTheory.Limits.widePushoutShapeOp_map, AlgebraicGeometry.isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, CategoryTheory.Limits.spanCompIso_app_right, CategoryTheory.Limits.pushoutCoconeOfRightIso_x, CommRingCat.Under.instPreservesFiniteProductsUnderPushout, CategoryTheory.Limits.PushoutCocone.condition_zero, CategoryTheory.Limits.PushoutCocone.ฮน_app_left, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ฮน_app_left, CategoryTheory.Limits.PushoutCocone.ofCocone_pt, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_hom_app, CategoryTheory.Limits.spanExt_app_one, CategoryTheory.Limits.opCospan_hom_app, CategoryTheory.Limits.PushoutCocone.isIso_inl_of_epi_of_isColimit, CategoryTheory.SmallObject.ฮนFunctorObj_eq, CommRingCat.inr_injective_of_flat, CategoryTheory.Limits.spanCompIso_inv_app_right, CategoryTheory.Limits.PushoutCocone.mk_ฮน_app, CategoryTheory.Limits.PushoutCocone.ฮน_app_right, CategoryTheory.Abelian.mono_pushout_of_mono_g, CategoryTheory.Limits.spanExt_inv_app_zero, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Limits.spanExt_app_left, CategoryTheory.Limits.widePushoutShapeOp_obj, CategoryTheory.BicartesianSq.isColimit', CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CategoryTheory.Limits.PushoutCocone.IsColimit.inl_desc_assoc, CategoryTheory.Limits.PushoutCocone.inr_colimit_cocone, CategoryTheory.Limits.PushoutCocone.op_ฯ€_app, CategoryTheory.Limits.CompleteLattice.pushout_eq_sup, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_inv_app, CategoryTheory.Limits.opCospan_inv_app, CategoryTheory.Limits.PullbackCone.unop_ฮน_app, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, CategoryTheory.Limits.cospanOp_hom_app, AlgebraicGeometry.instMonoObjWalkingSpanCompSchemeSpanForgetNoneWalkingPairSomeMapInitOfIsOpenImmersion, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Limits.widePullbackShapeOp_obj, wideSpan_map, CategoryTheory.Limits.pushoutCoconeOfRightIso_ฮน_app_left, CategoryTheory.Limits.spanCompIso_hom_app_right, CategoryTheory.Limits.widePushoutShapeOpEquiv_counitIso, AlgebraicGeometry.isPullback_Spec_map_pushout, CategoryTheory.Limits.walkingCospanOpEquiv_functor_map, CategoryTheory.Limits.Types.pushoutCocone_inr_mono_of_isColimit, AlgebraicGeometry.instIsOpenImmersionMapWalkingSpanSchemeSpan, CategoryTheory.Limits.walkingCospanOpEquiv_functor_obj, CategoryTheory.Limits.walkingSpanOpEquiv_functor_map, CategoryTheory.Limits.PushoutCocone.mk_pt, CategoryTheory.Limits.PushoutCocone.IsColimit.inr_desc_assoc, CommRingCat.inl_injective_of_flat, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ฮน_app_none, CategoryTheory.Limits.PushoutCocone.IsColimit.inr_desc, CategoryTheory.Limits.spanCompIso_hom_app_left, CategoryTheory.Limits.widePullbackShapeUnop_obj, CategoryTheory.SmallObject.ฯ€FunctorObj_eq, CategoryTheory.Limits.inl_comp_pushoutObjIso_inv, CategoryTheory.Limits.PushoutCocone.epi_inr_of_is_pushout_of_epi, CategoryTheory.Limits.inr_comp_pushoutObjIso_inv, CategoryTheory.Limits.spanExt_hom_app_left, CommRingCat.tensorProdIsoPushout_app, CategoryTheory.Square.isPushout_iff, CategoryTheory.Limits.Cocone.ofPushoutCocone_ฮน, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right, CategoryTheory.Limits.inl_comp_pushoutObjIso_inv_assoc, CategoryTheory.Limits.widePullbackShapeOpEquiv_functor, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.MorphismProperty.ind_underObj_pushout, inr_coprodIsoPushout_hom, CategoryTheory.Limits.PushoutCocone.IsColimit.inl_desc, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, CategoryTheory.Abelian.mono_inl_of_isColimit, CategoryTheory.Limits.PullbackCone.unop_pt, CategoryTheory.Limits.span_map_fst, CategoryTheory.Limits.widePushoutShapeUnop_map, CategoryTheory.Limits.pushoutCoconeOfLeftIso_x, CategoryTheory.Limits.PushoutCocone.op_pt, CategoryTheory.Limits.PushoutCocone.mk_ฮน_app_right, CategoryTheory.Limits.span_left, CategoryTheory.Limits.inl_comp_pushoutObjIso_hom_assoc, AlgebraicGeometry.isPullback_SpecMap_pushout, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, inl_coprodIsoPushout_inv, AlgebraicGeometry.isIso_pushoutSection_iff, CategoryTheory.Limits.PreservesPushout.of_iso_comparison, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.cospanOp_inv_app, CategoryTheory.Limits.pushoutCoconeOfRightIso_ฮน_app_none, CategoryTheory.Limits.PushoutCocone.mk_ฮน_app_left, CategoryTheory.Limits.walkingSpanOpEquiv_functor_obj, CategoryTheory.widePushoutShape_connected, CategoryTheory.Abelian.mono_pushout_of_mono_f, CategoryTheory.Limits.Types.Pushout.cocone_ฮน_app, CategoryTheory.epi_iff_isIso_inl, AlgebraicGeometry.mono_pushoutSection_of_isCompact_of_flat_left, inr_coprodIsoPushout_inv, wideSpan_obj, CategoryTheory.Limits.PushoutCocone.unop_pt, CategoryTheory.Limits.PushoutCocone.eta_hom_hom, CategoryTheory.Limits.spanExt_app_right, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_hom_app, inl_coprodIsoPushout_hom_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Limits.inr_comp_pushoutObjIso_inv_assoc, CategoryTheory.Limits.Types.instMonoPushoutInr, CategoryTheory.Limits.inr_comp_pushoutObjIso_hom, CategoryTheory.Abelian.mono_inl_of_factor_thru_epi_mono_factorization, CategoryTheory.Abelian.mono_inr_of_isColimit, CategoryTheory.Limits.diagramIsoSpan_inv_app, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, CategoryTheory.IsPushout.of_isColimit, CategoryTheory.Limits.span_zero, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.Limits.preservesPushout_symmetry, AlgebraicGeometry.isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, CategoryTheory.Limits.Cocone.ofPushoutCocone_pt, inl_coprodIsoPushout_inv_assoc, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_hom_app, CategoryTheory.Limits.opSpan_inv_app, CategoryTheory.Limits.PushoutCocone.isIso_inr_of_epi_of_isColimit, CategoryTheory.Limits.pushoutCoconeOfRightIso_ฮน_app_right, CategoryTheory.NormalEpiCategory.pushout_of_epi, inr_coprodIsoPushout_inv_assoc, CategoryTheory.Limits.PushoutCocone.unop_snd, CategoryTheory.epi_iff_isIso_inr, CategoryTheory.Limits.diagramIsoSpan_hom_app, CategoryTheory.Limits.widePullbackShapeOpEquiv_counitIso, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.Limits.PushoutCocone.unop_fst, CategoryTheory.Limits.widePushoutShapeOpEquiv_unitIso, CategoryTheory.IsPushout.of_isColimit_cocone, CategoryTheory.Limits.HasFiniteWidePushouts.out, CategoryTheory.Limits.PushoutCocone.op_fst, CategoryTheory.Limits.Types.pushoutCocone_inr_injective_of_isColimit, CategoryTheory.Limits.spanExt_inv_app_right, CategoryTheory.Limits.widePullbackShapeOp_map, AlgebraicGeometry.isIso_pushoutSection_of_isAffineOpen, RingHom.IsStableUnderBaseChange.pushout_inl, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_map, CategoryTheory.Limits.spanExt_inv_app_left, CategoryTheory.Limits.Types.Pushout.cocone_pt, CategoryTheory.IsPushout.isVanKampen_iff, CategoryTheory.Limits.widePullbackShapeOpEquiv_unitIso, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
diagramIsoWideSpan ๐Ÿ“–CompOpโ€”
equivalenceOfEquiv ๐Ÿ“–CompOpโ€”
evalCasesBash' ๐Ÿ“–CompOpโ€”
instDecidableEqHom ๐Ÿ“–CompOpโ€”
mkCocone ๐Ÿ“–CompOp
2 mathmath: mkCocone_pt, mkCocone_ฮน_app
struct ๐Ÿ“–CompOp
3 mathmath: hom_id, subsingleton_hom, CategoryTheory.Limits.WalkingSpan.instSubsingletonHom
uliftEquivalence ๐Ÿ“–CompOpโ€”
wideSpan ๐Ÿ“–CompOp
2 mathmath: wideSpan_map, wideSpan_obj

Theorems

NameKindAssumesProvesValidatesDepends On
hom_id ๐Ÿ“–mathematicalโ€”Hom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.WidePushoutShape
struct
โ€”โ€”
mkCocone_pt ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePushoutShape
category
CategoryTheory.Functor.map
Hom.init
CategoryTheory.Limits.Cocone.pt
mkCocone
โ€”โ€”
mkCocone_ฮน_app ๐Ÿ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePushoutShape
category
CategoryTheory.Functor.map
Hom.init
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ฮน
mkCocone
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
โ€”โ€”
subsingleton_hom ๐Ÿ“–mathematicalโ€”Quiver.IsThin
CategoryTheory.Limits.WidePushoutShape
CategoryTheory.CategoryStruct.toQuiver
struct
โ€”โ€”
wideSpan_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Limits.WidePushoutShape
category
wideSpan
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”โ€”
wideSpan_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePushoutShape
category
wideSpan
โ€”โ€”

CategoryTheory.Limits.WidePushoutShape.Hom

Definitions

NameCategoryTheorems
inhabited ๐Ÿ“–CompOpโ€”

CategoryTheory.Limits.WidePushoutShape.instDecidableEqHom

Definitions

NameCategoryTheorems
decEq ๐Ÿ“–CompOpโ€”

---

โ† Back to Index