Documentation

Mathlib.CategoryTheory.Limits.Shapes.WidePullbacks

Wide pullbacks #

We define the category WidePullbackShape, (resp. WidePushoutShape) which is the category obtained from a discrete category of type J by adjoining a terminal (resp. initial) element. Limits of this shape are wide pullbacks (pushouts). The convenience method wideCospan (wideSpan) constructs a functor from this category, hitting the given morphisms.

We use WidePullbackShape to define ordinary pullbacks (pushouts) by using J := WalkingPair, which allows easy proofs of some related lemmas. Furthermore, wide pullbacks are used to show the existence of limits in the slice category. Namely, if C has wide pullbacks then C/B has limits for any object B in C.

Typeclasses HasWidePullbacks and HasFiniteWidePullbacks assert the existence of wide pullbacks and finite wide pullbacks.

A wide pullback shape for any type J can be written simply as Option J.

Equations
    Instances For

      A wide pushout shape for any type J can be written simply as Option J.

      Equations
        Instances For

          The type of arrows for the shape indexing a wide pullback.

          Instances For
            def CategoryTheory.Limits.WidePullbackShape.instDecidableEqHom.decEq {J✝ : Type u_1} {a✝ a✝¹ : WidePullbackShape J✝} [DecidableEq J✝] (x✝ x✝¹ : a✝.Hom a✝¹) :
            Decidable (x✝ = x✝¹)
            Equations
              Instances For

                An aesop tactic for bulk cases on morphisms in WidePushoutShape

                Equations
                  Instances For
                    def CategoryTheory.Limits.WidePullbackShape.wideCospan {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) :

                    Construct a functor out of the wide pullback shape given a J-indexed collection of arrows to a fixed object.

                    Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Limits.WidePullbackShape.wideCospan_obj {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) (j : WidePullbackShape J) :
                        (wideCospan B objs arrows).obj j = Option.casesOn j B objs
                        @[simp]
                        theorem CategoryTheory.Limits.WidePullbackShape.wideCospan_map {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) {X✝ Y✝ : WidePullbackShape J} (f : X✝ Y✝) :
                        (wideCospan B objs arrows).map f = Hom.casesOn (motive := fun (a a_1 : WidePullbackShape J) (x : a.Hom a_1) => X✝ = aY✝ = a_1f x → (Option.casesOn X✝ B objs Option.casesOn Y✝ B objs)) f (fun (X : WidePullbackShape J) (h : X✝ = X) => Eq.ndrec (motive := fun (X : WidePullbackShape J) => Y✝ = Xf Hom.id X → (Option.casesOn X✝ B objs Option.casesOn Y✝ B objs)) (fun (h : Y✝ = X✝) => Eq.ndrec (motive := fun {Y : WidePullbackShape J} => (f : X✝ Y) → f Hom.id X✝ → (Option.casesOn X✝ B objs Option.casesOn Y B objs)) (fun (f : X✝ X✝) (h : f Hom.id X✝) => CategoryStruct.id (Option.casesOn X✝ B objs)) f) h) (fun (j : J) (h : X✝ = some j) => Eq.ndrec (motive := fun {X : WidePullbackShape J} => (f : X Y✝) → Y✝ = nonef Hom.term j → (Option.casesOn X B objs Option.casesOn Y✝ B objs)) (fun (f : some j Y✝) (h : Y✝ = none) => Eq.ndrec (motive := fun {Y : WidePullbackShape J} => (f : some j Y) → f Hom.term j → (Option.casesOn (some j) B objs Option.casesOn Y B objs)) (fun (f : some j none) (h : f Hom.term j) => arrows j) f) f)
                        def CategoryTheory.Limits.WidePullbackShape.diagramIsoWideCospan {J : Type w} {C : Type u} [Category.{v, u} C] (F : Functor (WidePullbackShape J) C) :
                        F wideCospan (F.obj none) (fun (j : J) => F.obj (some j)) fun (j : J) => F.map (Hom.term j)

                        Every diagram is naturally isomorphic (actually, equal) to a wideCospan

                        Equations
                          Instances For
                            def CategoryTheory.Limits.WidePullbackShape.mkCone {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePullbackShape J) C} {X : C} (f : X F.obj none) (π : (j : J) → X F.obj (some j)) (w : ∀ (j : J), CategoryStruct.comp (π j) (F.map (Hom.term j)) = f) :

                            Construct a cone over a wide cospan.

                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Limits.WidePullbackShape.mkCone_pt {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePullbackShape J) C} {X : C} (f : X F.obj none) (π : (j : J) → X F.obj (some j)) (w : ∀ (j : J), CategoryStruct.comp (π j) (F.map (Hom.term j)) = f) :
                                (mkCone f π w).pt = X
                                @[simp]
                                theorem CategoryTheory.Limits.WidePullbackShape.mkCone_π_app {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePullbackShape J) C} {X : C} (f : X F.obj none) (π : (j : J) → X F.obj (some j)) (w : ∀ (j : J), CategoryStruct.comp (π j) (F.map (Hom.term j)) = f) (j : WidePullbackShape J) :
                                (mkCone f π w).π.app j = match j with | none => f | some j => π j

                                Wide pullback diagrams of equivalent index types are equivalent.

                                Equations
                                  Instances For

                                    Lifting universe and morphism levels preserves wide pullback diagrams.

                                    Equations
                                      Instances For
                                        def CategoryTheory.Limits.WidePullbackShape.functorExt {C : Type u} [Category.{v, u} C] {ι : Type u_1} {F G : Functor (WidePullbackShape ι) C} (base : F.obj none G.obj none) (comp : (i : ι) → F.obj (some i) G.obj (some i)) (w : ∀ (i : ι), CategoryStruct.comp (F.map (Hom.term i)) base.hom = CategoryStruct.comp (comp i).hom (G.map (Hom.term i)) := by cat_disch) :
                                        F G

                                        Show two functors out of a wide pullback shape are isomorphic by showing their components are isomorphic.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Limits.WidePullbackShape.functorExt_inv_app {C : Type u} [Category.{v, u} C] {ι : Type u_1} {F G : Functor (WidePullbackShape ι) C} (base : F.obj none G.obj none) (comp : (i : ι) → F.obj (some i) G.obj (some i)) (w : ∀ (i : ι), CategoryStruct.comp (F.map (Hom.term i)) base.hom = CategoryStruct.comp (comp i).hom (G.map (Hom.term i)) := by cat_disch) (X : WidePullbackShape ι) :
                                            (functorExt base comp w).inv.app X = (match X with | none => base | some i => comp i).inv
                                            @[simp]
                                            theorem CategoryTheory.Limits.WidePullbackShape.functorExt_hom_app {C : Type u} [Category.{v, u} C] {ι : Type u_1} {F G : Functor (WidePullbackShape ι) C} (base : F.obj none G.obj none) (comp : (i : ι) → F.obj (some i) G.obj (some i)) (w : ∀ (i : ι), CategoryStruct.comp (F.map (Hom.term i)) base.hom = CategoryStruct.comp (comp i).hom (G.map (Hom.term i)) := by cat_disch) (X : WidePullbackShape ι) :
                                            (functorExt base comp w).hom.app X = (match X with | none => base | some i => comp i).hom

                                            The type of arrows for the shape indexing a wide pushout.

                                            Instances For
                                              instance CategoryTheory.Limits.WidePushoutShape.instDecidableEqHom {J✝ : Type u_1} {a✝ a✝¹ : WidePushoutShape J✝} [DecidableEq J✝] :
                                              DecidableEq (a✝.Hom a✝¹)
                                              Equations
                                                def CategoryTheory.Limits.WidePushoutShape.instDecidableEqHom.decEq {J✝ : Type u_1} {a✝ a✝¹ : WidePushoutShape J✝} [DecidableEq J✝] (x✝ x✝¹ : a✝.Hom a✝¹) :
                                                Decidable (x✝ = x✝¹)
                                                Equations
                                                  Instances For

                                                    An aesop tactic for bulk cases on morphisms in WidePushoutShape

                                                    Equations
                                                      Instances For
                                                        def CategoryTheory.Limits.WidePushoutShape.wideSpan {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) :

                                                        Construct a functor out of the wide pushout shape given a J-indexed collection of arrows from a fixed object.

                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem CategoryTheory.Limits.WidePushoutShape.wideSpan_map {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) {X✝ Y✝ : WidePushoutShape J} (f : X✝ Y✝) :
                                                            (wideSpan B objs arrows).map f = Hom.casesOn (motive := fun (a a_1 : WidePushoutShape J) (x : a.Hom a_1) => X✝ = aY✝ = a_1f x → (Option.casesOn X✝ B objs Option.casesOn Y✝ B objs)) f (fun (X : WidePushoutShape J) (h : X✝ = X) => Eq.ndrec (motive := fun (X : WidePushoutShape J) => Y✝ = Xf Hom.id X → (Option.casesOn X✝ B objs Option.casesOn Y✝ B objs)) (fun (h : Y✝ = X✝) => Eq.ndrec (motive := fun {Y : WidePushoutShape J} => (f : X✝ Y) → f Hom.id X✝ → (Option.casesOn X✝ B objs Option.casesOn Y B objs)) (fun (f : X✝ X✝) (h : f Hom.id X✝) => CategoryStruct.id (Option.casesOn X✝ B objs)) f) h) (fun (j : J) (h : X✝ = none) => Eq.ndrec (motive := fun {X : WidePushoutShape J} => (f : X Y✝) → Y✝ = some jf Hom.init j → (Option.casesOn X B objs Option.casesOn Y✝ B objs)) (fun (f : none Y✝) (h : Y✝ = some j) => Eq.ndrec (motive := fun {Y : WidePushoutShape J} => (f : none Y) → f Hom.init j → (Option.casesOn none B objs Option.casesOn Y B objs)) (fun (f : none some j) (h : f Hom.init j) => arrows j) f) f)
                                                            @[simp]
                                                            theorem CategoryTheory.Limits.WidePushoutShape.wideSpan_obj {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) (j : WidePushoutShape J) :
                                                            (wideSpan B objs arrows).obj j = Option.casesOn j B objs
                                                            def CategoryTheory.Limits.WidePushoutShape.diagramIsoWideSpan {J : Type w} {C : Type u} [Category.{v, u} C] (F : Functor (WidePushoutShape J) C) :
                                                            F wideSpan (F.obj none) (fun (j : J) => F.obj (some j)) fun (j : J) => F.map (Hom.init j)

                                                            Every diagram is naturally isomorphic (actually, equal) to a wideSpan

                                                            Equations
                                                              Instances For
                                                                def CategoryTheory.Limits.WidePushoutShape.mkCocone {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePushoutShape J) C} {X : C} (f : F.obj none X) (ι : (j : J) → F.obj (some j) X) (w : ∀ (j : J), CategoryStruct.comp (F.map (Hom.init j)) (ι j) = f) :

                                                                Construct a cocone over a wide span.

                                                                Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem CategoryTheory.Limits.WidePushoutShape.mkCocone_pt {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePushoutShape J) C} {X : C} (f : F.obj none X) (ι : (j : J) → F.obj (some j) X) (w : ∀ (j : J), CategoryStruct.comp (F.map (Hom.init j)) (ι j) = f) :
                                                                    (mkCocone f ι w).pt = X
                                                                    @[simp]
                                                                    theorem CategoryTheory.Limits.WidePushoutShape.mkCocone_ι_app {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePushoutShape J) C} {X : C} (f : F.obj none X) (ι : (j : J) → F.obj (some j) X) (w : ∀ (j : J), CategoryStruct.comp (F.map (Hom.init j)) (ι j) = f) (j : WidePushoutShape J) :
                                                                    (mkCocone f ι w).ι.app j = match j with | none => f | some j => ι j

                                                                    Wide pushout diagrams of equivalent index types are equivalent.

                                                                    Equations
                                                                      Instances For

                                                                        Lifting universe and morphism levels preserves wide pushout diagrams.

                                                                        Equations
                                                                          Instances For
                                                                            @[reducible, inline]

                                                                            A category HasWidePullbacks if it has all limits of shape WidePullbackShape J, i.e. if it has a wide pullback for every collection of morphisms with the same codomain.

                                                                            Equations
                                                                              Instances For
                                                                                @[reducible, inline]

                                                                                A category HasWidePushouts if it has all colimits of shape WidePushoutShape J, i.e. if it has a wide pushout for every collection of morphisms with the same domain.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[reducible, inline]
                                                                                    abbrev CategoryTheory.Limits.HasWidePullback {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) :

                                                                                    HasWidePullback B objs arrows means that wideCospan B objs arrows has a limit.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[reducible, inline]
                                                                                        abbrev CategoryTheory.Limits.HasWidePushout {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) :

                                                                                        HasWidePushout B objs arrows means that wideSpan B objs arrows has a colimit.

                                                                                        Equations
                                                                                          Instances For
                                                                                            @[reducible, inline]
                                                                                            noncomputable abbrev CategoryTheory.Limits.widePullback {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] :
                                                                                            C

                                                                                            A choice of wide pullback.

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[reducible, inline]
                                                                                                noncomputable abbrev CategoryTheory.Limits.widePushout {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] :
                                                                                                C

                                                                                                A choice of wide pushout.

                                                                                                Equations
                                                                                                  Instances For
                                                                                                    @[reducible, inline]
                                                                                                    noncomputable abbrev CategoryTheory.Limits.WidePullback.π {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] (j : J) :
                                                                                                    widePullback B objs arrows objs j

                                                                                                    The j-th projection from the pullback.

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        @[reducible, inline]
                                                                                                        noncomputable abbrev CategoryTheory.Limits.WidePullback.base {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] :
                                                                                                        widePullback B objs arrows B

                                                                                                        The unique map to the base from the pullback.

                                                                                                        Equations
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.Limits.WidePullback.π_arrow {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] (j : J) :
                                                                                                            CategoryStruct.comp (π arrows j) (arrows j) = base arrows
                                                                                                            @[simp]
                                                                                                            theorem CategoryTheory.Limits.WidePullback.π_arrow_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] (j : J) {Z : C} (h : B Z) :
                                                                                                            @[reducible, inline]
                                                                                                            noncomputable abbrev CategoryTheory.Limits.WidePullback.lift {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} {arrows : (j : J) → objs j B} [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) :
                                                                                                            X widePullback B objs arrows

                                                                                                            Lift a collection of morphisms to a morphism to the pullback.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                theorem CategoryTheory.Limits.WidePullback.lift_π {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) (j : J) :
                                                                                                                CategoryStruct.comp (lift f fs w) (π arrows j) = fs j
                                                                                                                theorem CategoryTheory.Limits.WidePullback.lift_π_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) (j : J) {Z : C} (h : objs j Z) :
                                                                                                                theorem CategoryTheory.Limits.WidePullback.lift_base {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) :
                                                                                                                CategoryStruct.comp (lift f fs w) (base arrows) = f
                                                                                                                theorem CategoryTheory.Limits.WidePullback.lift_base_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) {Z : C} (h : B Z) :
                                                                                                                theorem CategoryTheory.Limits.WidePullback.eq_lift_of_comp_eq {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) (g : X widePullback B objs arrows) :
                                                                                                                (∀ (j : J), CategoryStruct.comp g (π arrows j) = fs j)CategoryStruct.comp g (base arrows) = fg = lift f fs w
                                                                                                                theorem CategoryTheory.Limits.WidePullback.hom_eq_lift {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (g : X widePullback B objs arrows) :
                                                                                                                g = lift (CategoryStruct.comp g (base arrows)) (fun (j : J) => CategoryStruct.comp g (π arrows j))
                                                                                                                theorem CategoryTheory.Limits.WidePullback.hom_ext {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (g1 g2 : X widePullback B objs arrows) :
                                                                                                                (∀ (j : J), CategoryStruct.comp g1 (π arrows j) = CategoryStruct.comp g2 (π arrows j))CategoryStruct.comp g1 (base arrows) = CategoryStruct.comp g2 (base arrows)g1 = g2
                                                                                                                theorem CategoryTheory.Limits.WidePullback.hom_ext_iff {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} {arrows : (j : J) → objs j B} [HasWidePullback B objs arrows] {X : C} {g1 g2 : X widePullback B objs arrows} :
                                                                                                                g1 = g2 (∀ (j : J), CategoryStruct.comp g1 (π arrows j) = CategoryStruct.comp g2 (π arrows j)) CategoryStruct.comp g1 (base arrows) = CategoryStruct.comp g2 (base arrows)
                                                                                                                @[reducible, inline]
                                                                                                                abbrev CategoryTheory.Limits.WidePullbackCone {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} (f : (i : ι) → Y i X) :
                                                                                                                Type (max (max u_1 u) v)

                                                                                                                A wide pullback cone is a cone on the wide cospan formed by a family of morphisms.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    def CategoryTheory.Limits.WidePullbackCone.π {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) (i : ι) :
                                                                                                                    s.pt Y i

                                                                                                                    The projection on the components of a wide pullback cone.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        def CategoryTheory.Limits.WidePullbackCone.base {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) :
                                                                                                                        s.pt X

                                                                                                                        The projection to the base of a wide pullback cone.

                                                                                                                        Equations
                                                                                                                          Instances For
                                                                                                                            @[simp]
                                                                                                                            theorem CategoryTheory.Limits.WidePullbackCone.condition {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) (i : ι) :
                                                                                                                            @[simp]
                                                                                                                            theorem CategoryTheory.Limits.WidePullbackCone.condition_assoc {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) (i : ι) {Z : C} (h : X Z) :
                                                                                                                            def CategoryTheory.Limits.WidePullbackCone.mk {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {W : C} (b : W X) (π : (i : ι) → W Y i) (h : ∀ (i : ι), CategoryStruct.comp (π i) (f i) = b) :

                                                                                                                            Construct a wide pullback cone from the projections.

                                                                                                                            Equations
                                                                                                                              Instances For
                                                                                                                                @[simp]
                                                                                                                                theorem CategoryTheory.Limits.WidePullbackCone.mk_pt {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {W : C} (b : W X) (π : (i : ι) → W Y i) (h : ∀ (i : ι), CategoryStruct.comp (π i) (f i) = b) :
                                                                                                                                (mk b π h).pt = W
                                                                                                                                @[simp]
                                                                                                                                theorem CategoryTheory.Limits.WidePullbackCone.mk_base {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {W : C} (b : W X) (π : (i : ι) → W Y i) (h : ∀ (i : ι), CategoryStruct.comp (π i) (f i) = b) :
                                                                                                                                (mk b π h).base = b
                                                                                                                                @[simp]
                                                                                                                                theorem CategoryTheory.Limits.WidePullbackCone.mk_π {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {W : C} (b : W X) (π : (i : ι) → W Y i) (h : ∀ (i : ι), CategoryStruct.comp (π i) (f i) = b) (i : ι) :
                                                                                                                                (mk b π h).π i = π i
                                                                                                                                def CategoryTheory.Limits.WidePullbackCone.IsLimit.mk {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) (lift : (t : WidePullbackCone f) → t.pt s.pt) (facbase : ∀ (t : WidePullbackCone f), CategoryStruct.comp (lift t) s.base = t.base) (facπ : ∀ (t : WidePullbackCone f) (i : ι), CategoryStruct.comp (lift t) (s.π i) = t.π i) (uniq : ∀ (t : WidePullbackCone f) (m : t.pt s.pt), CategoryStruct.comp m s.base = t.base(∀ (i : ι), CategoryStruct.comp m (s.π i) = t.π i)m = lift t) :

                                                                                                                                Constructor to show a wide pullback cone is limiting.

                                                                                                                                Equations
                                                                                                                                  Instances For
                                                                                                                                    theorem CategoryTheory.Limits.WidePullbackCone.IsLimit.hom_ext {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s : WidePullbackCone f} (hs : IsLimit s) {W : C} {k l : W s.pt} (hbase : CategoryStruct.comp k s.base = CategoryStruct.comp l s.base) ( : ∀ (i : ι), CategoryStruct.comp k (s.π i) = CategoryStruct.comp l (s.π i)) :
                                                                                                                                    k = l
                                                                                                                                    def CategoryTheory.Limits.WidePullbackCone.IsLimit.lift {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s : WidePullbackCone f} (hs : IsLimit s) {W : C} (b : W X) (a : (i : ι) → W Y i) (w : ∀ (i : ι), CategoryStruct.comp (a i) (f i) = b) :
                                                                                                                                    W s.pt

                                                                                                                                    Lift a family of morphisms to a limiting wide pullback cone.

                                                                                                                                    Equations
                                                                                                                                      Instances For
                                                                                                                                        @[simp]
                                                                                                                                        theorem CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s : WidePullbackCone f} (hs : IsLimit s) {W : C} (b : W X) (a : (i : ι) → W Y i) (w : ∀ (i : ι), CategoryStruct.comp (a i) (f i) = b) :
                                                                                                                                        @[simp]
                                                                                                                                        theorem CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_base_assoc {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s : WidePullbackCone f} (hs : IsLimit s) {W : C} (b : W X) (a : (i : ι) → W Y i) (w : ∀ (i : ι), CategoryStruct.comp (a i) (f i) = b) {Z : C} (h : X Z) :
                                                                                                                                        @[simp]
                                                                                                                                        theorem CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_π {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s : WidePullbackCone f} (hs : IsLimit s) {W : C} (b : W X) (a : (i : ι) → W Y i) (w : ∀ (i : ι), CategoryStruct.comp (a i) (f i) = b) (i : ι) :
                                                                                                                                        CategoryStruct.comp (lift hs b a w) (s.π i) = a i
                                                                                                                                        @[simp]
                                                                                                                                        theorem CategoryTheory.Limits.WidePullbackCone.IsLimit.lift_π_assoc {C : Type u} [Category.{v, u} C] {ι : Type u_1} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s : WidePullbackCone f} (hs : IsLimit s) {W : C} (b : W X) (a : (i : ι) → W Y i) (w : ∀ (i : ι), CategoryStruct.comp (a i) (f i) = b) (i : ι) {Z : C} (h : Y i Z) :
                                                                                                                                        def CategoryTheory.Limits.WidePullbackCone.ext {C : Type u} [Category.{v, u} C] {ι : Type u_2} {X : C} {Y : ιC} {f : (i : ι) → Y i X} {s t : WidePullbackCone f} (e : s.pt t.pt) (base : CategoryStruct.comp e.hom t.base = s.base := by cat_disch) (π : ∀ (i : ι), CategoryStruct.comp e.hom (t.π i) = s.π i := by cat_disch) :
                                                                                                                                        s t

                                                                                                                                        To show two wide pullback cones are isomorphic, it suffices to give a compatible isomorphism of their cone points.

                                                                                                                                        Equations
                                                                                                                                          Instances For
                                                                                                                                            def CategoryTheory.Limits.WidePullbackCone.reindex {C : Type u} [Category.{v, u} C] {ι : Type u_2} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) {ι' : Type u_3} (e : ι' ι) :
                                                                                                                                            WidePullbackCone fun (i : ι') => f (e i)

                                                                                                                                            Reindex a wide pullback cone.

                                                                                                                                            Equations
                                                                                                                                              Instances For
                                                                                                                                                @[simp]
                                                                                                                                                theorem CategoryTheory.Limits.WidePullbackCone.reindex_pt {C : Type u} [Category.{v, u} C] {ι : Type u_2} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) {ι' : Type u_3} (e : ι' ι) :
                                                                                                                                                (s.reindex e).pt = s.pt
                                                                                                                                                @[simp]
                                                                                                                                                theorem CategoryTheory.Limits.WidePullbackCone.reindex_base {C : Type u} [Category.{v, u} C] {ι : Type u_2} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) {ι' : Type u_3} (e : ι' ι) :
                                                                                                                                                (s.reindex e).base = s.base
                                                                                                                                                @[simp]
                                                                                                                                                theorem CategoryTheory.Limits.WidePullbackCone.reindex_π {C : Type u} [Category.{v, u} C] {ι : Type u_2} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) {ι' : Type u_3} (e : ι' ι) (i : ι') :
                                                                                                                                                (s.reindex e).π i = s.π (e i)
                                                                                                                                                def CategoryTheory.Limits.WidePullbackCone.reindexIsLimitEquiv {C : Type u} [Category.{v, u} C] {ι : Type u_2} {X : C} {Y : ιC} {f : (i : ι) → Y i X} (s : WidePullbackCone f) {ι' : Type u_3} (e : ι' ι) :

                                                                                                                                                Reindexing a pullback cone preserves being limiting.

                                                                                                                                                Equations
                                                                                                                                                  Instances For
                                                                                                                                                    @[reducible, inline]
                                                                                                                                                    noncomputable abbrev CategoryTheory.Limits.WidePushout.ι {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] (j : J) :
                                                                                                                                                    objs j widePushout B objs arrows

                                                                                                                                                    The j-th inclusion to the pushout.

                                                                                                                                                    Equations
                                                                                                                                                      Instances For
                                                                                                                                                        @[reducible, inline]
                                                                                                                                                        noncomputable abbrev CategoryTheory.Limits.WidePushout.head {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] :
                                                                                                                                                        B widePushout B objs arrows

                                                                                                                                                        The unique map from the head to the pushout.

                                                                                                                                                        Equations
                                                                                                                                                          Instances For
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem CategoryTheory.Limits.WidePushout.arrow_ι {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] (j : J) :
                                                                                                                                                            CategoryStruct.comp (arrows j) (ι arrows j) = head arrows
                                                                                                                                                            theorem CategoryTheory.Limits.WidePushout.arrow_ι_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] (j : J) {Z : C} (h : widePushout B objs arrows Z) :
                                                                                                                                                            @[reducible, inline]
                                                                                                                                                            noncomputable abbrev CategoryTheory.Limits.WidePushout.desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} {arrows : (j : J) → B objs j} [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) :
                                                                                                                                                            widePushout B objs arrows X

                                                                                                                                                            Descend a collection of morphisms to a morphism from the pushout.

                                                                                                                                                            Equations
                                                                                                                                                              Instances For
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.ι_desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) (j : J) :
                                                                                                                                                                CategoryStruct.comp (ι arrows j) (desc f fs w) = fs j
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.ι_desc_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) (j : J) {Z : C} (h : X Z) :
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.head_desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) :
                                                                                                                                                                CategoryStruct.comp (head arrows) (desc f fs w) = f
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.head_desc_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) {Z : C} (h : X Z) :
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.eq_desc_of_comp_eq {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) (g : widePushout B objs arrows X) :
                                                                                                                                                                (∀ (j : J), CategoryStruct.comp (ι arrows j) g = fs j)CategoryStruct.comp (head arrows) g = fg = desc f fs w
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.hom_eq_desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (g : widePushout B objs arrows X) :
                                                                                                                                                                g = desc (CategoryStruct.comp (head arrows) g) (fun (j : J) => CategoryStruct.comp (ι arrows j) g)
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.hom_ext {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (g1 g2 : widePushout B objs arrows X) :
                                                                                                                                                                (∀ (j : J), CategoryStruct.comp (ι arrows j) g1 = CategoryStruct.comp (ι arrows j) g2)CategoryStruct.comp (head arrows) g1 = CategoryStruct.comp (head arrows) g2g1 = g2
                                                                                                                                                                theorem CategoryTheory.Limits.WidePushout.hom_ext_iff {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} {arrows : (j : J) → B objs j} [HasWidePushout B objs arrows] {X : C} {g1 g2 : widePushout B objs arrows X} :
                                                                                                                                                                g1 = g2 (∀ (j : J), CategoryStruct.comp (ι arrows j) g1 = CategoryStruct.comp (ι arrows j) g2) CategoryStruct.comp (head arrows) g1 = CategoryStruct.comp (head arrows) g2

                                                                                                                                                                The action on morphisms of the obvious functor WidePullbackShape_op : WidePullbackShape J ⥤ (WidePushoutShape J)ᵒᵖ

                                                                                                                                                                Equations
                                                                                                                                                                  Instances For

                                                                                                                                                                    The obvious functor WidePullbackShape J ⥤ (WidePushoutShape J)ᵒᵖ

                                                                                                                                                                    Equations
                                                                                                                                                                      Instances For
                                                                                                                                                                        @[simp]
                                                                                                                                                                        theorem CategoryTheory.Limits.widePullbackShapeOp_map (J : Type w) {X₁ X₂ : WidePullbackShape J} (a✝ : X₁ X₂) :

                                                                                                                                                                        The action on morphisms of the obvious functor widePushoutShapeOp : WidePushoutShape J ⥤ (WidePullbackShape J)ᵒᵖ

                                                                                                                                                                        Equations
                                                                                                                                                                          Instances For

                                                                                                                                                                            The obvious functor WidePushoutShape J ⥤ (WidePullbackShape J)ᵒᵖ

                                                                                                                                                                            Equations
                                                                                                                                                                              Instances For

                                                                                                                                                                                The obvious functor (WidePullbackShape J)ᵒᵖ ⥤ WidePushoutShape J

                                                                                                                                                                                Equations
                                                                                                                                                                                  Instances For

                                                                                                                                                                                    The obvious functor (WidePushoutShape J)ᵒᵖ ⥤ WidePullbackShape J

                                                                                                                                                                                    Equations
                                                                                                                                                                                      Instances For

                                                                                                                                                                                        The inverse of the unit isomorphism of the equivalence widePushoutShapeOpEquiv : (WidePushoutShape J)ᵒᵖ ≌ WidePullbackShape J

                                                                                                                                                                                        Equations
                                                                                                                                                                                          Instances For

                                                                                                                                                                                            The counit isomorphism of the equivalence widePullbackShapeOpEquiv : (WidePullbackShape J)ᵒᵖ ≌ WidePushoutShape J

                                                                                                                                                                                            Equations
                                                                                                                                                                                              Instances For

                                                                                                                                                                                                The inverse of the unit isomorphism of the equivalence widePullbackShapeOpEquiv : (WidePullbackShape J)ᵒᵖ ≌ WidePushoutShape J

                                                                                                                                                                                                Equations
                                                                                                                                                                                                  Instances For

                                                                                                                                                                                                    The counit isomorphism of the equivalence widePushoutShapeOpEquiv : (WidePushoutShape J)ᵒᵖ ≌ WidePullbackShape J

                                                                                                                                                                                                    Equations
                                                                                                                                                                                                      Instances For

                                                                                                                                                                                                        The duality equivalence (WidePushoutShape J)ᵒᵖ ≌ WidePullbackShape J

                                                                                                                                                                                                        Equations
                                                                                                                                                                                                          Instances For

                                                                                                                                                                                                            The duality equivalence (WidePullbackShape J)ᵒᵖ ≌ WidePushoutShape J

                                                                                                                                                                                                            Equations
                                                                                                                                                                                                              Instances For

                                                                                                                                                                                                                If a category has wide pushouts on a higher universe level it also has wide pushouts on a lower universe level.

                                                                                                                                                                                                                If a category has wide pullbacks on a higher universe level it also has wide pullbacks on a lower universe level.