Documentation Verification Report

ZeroObjects

📁 Source: Mathlib/CategoryTheory/Limits/Shapes/ZeroObjects.lean

Statistics

MetricCount
DefinitionsHasZeroObject, uniqueFrom, uniqueTo, zero', zeroIsInitial, zeroIsTerminal, zeroIsoInitial, zeroIsoIsInitial, zeroIsoIsTerminal, zeroIsoTerminal, IsZero, from_, isInitial, isTerminal, iso, isoIsInitial, isoIsTerminal, isoZero, to_
19
TheoremsisZero, isZero_iff, isZero_iff, from_zero_ext, from_zero_ext_iff, hasInitial, hasTerminal, initialMonoClass, instEpi, instMono, instSubsingletonIsoOfNat, to_zero_ext, to_zero_ext_iff, zero, zero_to_zero_isIso, epi, eq_from, eq_of_src, eq_of_tgt, eq_to, from_eq, hasZeroObject, mono, obj, of_full_of_faithful_of_isZero, of_iso, op, to_eq, unique_from, unique_to, unop, hasZeroObject_op, hasZeroObject_pUnit, hasZeroObject_unop, isZero_zero
35
Total54

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
isZero 📖mathematicalCategoryTheory.Limits.IsZero
obj
CategoryTheory.Functor
category
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.IsZero.eq_of_tgt
isZero_iff 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
category
obj
CategoryTheory.Limits.IsZero.obj
isZero

CategoryTheory.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_iff 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Limits.IsZero.of_iso

CategoryTheory.Limits

Definitions

NameCategoryTheorems
HasZeroObject 📖CompData
30 mathmath: CategoryTheory.instHasZeroObjectOppositeShift, DerivedCategory.instHasZeroObject, hasZeroObject_of_hasTerminal_object, AddCommGrpCat.hasZeroObject, CategoryTheory.Functor.hasZeroObject_of_additive, CategoryTheory.DifferentialObject.hasZeroObject, IsZero.hasZeroObject, CategoryTheory.ShortComplex.Exact.hasZeroObject, CategoryTheory.GradedObject.hasZeroObject, ModuleCat.instHasZeroObject, HomotopyCategory.instHasZeroObject, AddGrpCat.hasZeroObject, GrpCat.instHasZeroObject, SemiNormedGrp.hasZeroObject, CategoryTheory.ObjectProperty.instHasZeroObjectFullSubcategoryOfContainsZero, CategoryTheory.instHasZeroObjectPullbackShift, CategoryTheory.NonPreadditiveAbelian.has_zero_object, hasZeroObject_op, SemiNormedGrp₁.hasZeroObject, hasZeroObject_pUnit, CategoryTheory.Localization.instHasZeroObjectLocalization, CategoryTheory.Localization.instHasZeroObjectLocalization', CommGrpCat.instHasZeroObject, HasZeroObject.instFunctor, hasZeroObject_unop, HomologicalComplex.instHasZeroObject, hasZeroObject_of_hasFiniteBiproducts, SemimoduleCat.instHasZeroObject, CategoryTheory.Abelian.hasZeroObject, hasZeroObject_of_hasInitial_object
IsZero 📖CompData
124 mathmath: CategoryTheory.ShortComplex.HomologyData.exact_iff, HomologicalComplex.exactAt_iff_isZero_homology, AddCommGrpCat.isZero_iff_subsingleton, CategoryTheory.ObjectProperty.instIsSerreClassIsZero, HomologicalComplex.isZero_single_obj_X, CategoryTheory.Pretriangulated.Triangle.isZero₃_of_isIso₁, HomologicalComplex.isZero_single_obj_homology, CochainComplex.isStrictlyLE_iff, ModuleCat.isZero_iff_subsingleton, HomologicalComplex.isZero_stupidTrunc_X, HomotopyCategory.isZero_quotient_obj_iff, DerivedCategory.isLE_iff, CommGrpCat.isZero_of_subsingleton, DerivedCategory.isZero_of_isGE, KernelFork.IsLimit.isZero_of_mono, isZero_kernel_of_mono, CategoryTheory.Functor.mem_homologicalKernel_iff, CommGrpCat.isZero_iff_subsingleton, CategoryTheory.ObjectProperty.instIsClosedUnderSubobjectsIsZeroOfHasZeroMorphisms, SemimoduleCat.isZero_iff_subsingleton, CategoryTheory.Abelian.isoModSerre_kernel_eq_isLocal_of_rightAdjoint, HomologicalComplex.isZero_zero, CategoryTheory.ShortComplex.ShortExact.isIso_g_iff, IsTerminal.isZero, CategoryTheory.ShortComplex.Exact.condition, GrpCat.isZero_of_subsingleton, isIsoZero_iff_source_target_isZero, CategoryTheory.isZero_Tor'_succ_of_projective, isZero_zero, CategoryTheory.ShortComplex.RightHomologyData.exact_iff, HomologicalComplex.IsStrictlySupported.isZero, DerivedCategory.isZero_of_isLE, HomologicalComplex.isZero_double_X, HomologicalComplex.isZero_stupidTrunc_iff, CochainComplex.isStrictlyGE_iff, SemiNormedGrp.isZero_of_subsingleton, IsZero.of_mono_zero, AddGrpCat.isZero_iff_subsingleton, CochainComplex.isZero_of_isStrictlyLE, HasZeroObject.zero, CategoryTheory.isZero_of_hasProjectiveDimensionLT_zero, CategoryTheory.ShortComplex.LeftHomologyData.exact_map_iff, CategoryTheory.ShortComplex.exact_iff_isZero_homology, CategoryTheory.Functor.zero_obj, HomologicalComplex.extend.isZero_X, CategoryTheory.Pretriangulated.Triangle.isZero₂_iff_isIso₃, CategoryTheory.Pretriangulated.Triangle.isZero₃_iff_isIso₁, IsInitial.isZero, CategoryTheory.Preadditive.epi_iff_isZero_cokernel, HomologicalComplex.isZero_extend_X, CategoryTheory.Functor.isZero_iff, isZero_cokernel_of_epi, CategoryTheory.ObjectProperty.instIsClosedUnderQuotientsIsZeroOfHasZeroMorphisms, CategoryTheory.Simple.not_isZero, CategoryTheory.Functor.isZero_leftDerived_obj_projective_succ, CategoryTheory.Triangulated.TStructure.isZero, CategoryTheory.Preadditive.mono_iff_isZero_kernel', AddCommGrpCat.isZero_of_subsingleton, AddGrpCat.isZero_of_subsingleton, HomologicalComplex.IsStrictlySupportedOutside.isZero, DerivedCategory.isGE_iff, CochainComplex.mappingCone.isZero_X_iff, CategoryTheory.Pretriangulated.Triangle.isZero₂_of_isIso₃, CategoryTheory.ObjectProperty.instIsClosedUnderExtensionsIsZero, CategoryTheory.Abelian.isoModSerre_kernel_eq_leftBousfield_W_of_rightAdjoint, SemimoduleCat.isZero_of_subsingleton, isZero_groupCohomology_succ_of_subsingleton, Rep.isZero_Tor_succ_of_projective, CategoryTheory.ShortComplex.ShortExact.isIso_f_iff, CategoryTheory.ShortComplex.Exact.isZero_of_both_zeros, CochainComplex.isZero_of_isStrictlyGE, CategoryTheory.ShortComplex.exact_iff_isZero_leftHomology, CategoryTheory.Iso.isZero_iff, IsZero.iff_isSplitEpi_eq_zero, CategoryTheory.Preadditive.mono_iff_isZero_kernel, CategoryTheory.Pretriangulated.Triangle.isZero₂_iff, CategoryTheory.ObjectProperty.exists_prop_of_containsZero, HomologicalComplex.isZero_extend_X', CategoryTheory.ShortComplex.RightHomologyData.exact_map_iff, SemimoduleCat.isZero_of_iff_subsingleton, CategoryTheory.Abelian.isLocalization_isoModSerre_kernel_of_leftAdjoint, CategoryTheory.Injective.exists_presentation, IsZero.of_mono_eq_zero, CategoryTheory.projectiveDimension_eq_bot_iff, CategoryTheory.Biprod.isIso_inl_iff_isZero, GrpCat.isZero_iff_subsingleton, CategoryTheory.isZero_of_hasInjectiveDimensionLT_zero, HomotopyCategory.mem_subcategoryAcyclic_iff, CochainComplex.isZero_of_isGE, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', HomologicalComplex.isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside, isZero_Ext_succ_of_projective, CategoryTheory.injectiveDimension_eq_bot_iff, CategoryTheory.ShortComplex.LeftHomologyData.exact_iff, biprod_isZero_iff, CategoryTheory.Abelian.isoModSerre_kernel_eq_inverseImage_isomorphisms, CategoryTheory.hasProjectiveDimensionLT_zero_iff_isZero, IsZero.of_epi_zero, SemiNormedGrp₁.isZero_of_subsingleton, CategoryTheory.Pretriangulated.Triangle.isZero₃_iff, CategoryTheory.ShortComplex.exact_iff_isZero_rightHomology, IsZero.iff_id_eq_zero, HomologicalComplex.isZero_X_of_isStrictlySupported, CategoryTheory.Pretriangulated.Triangle.isZero₁_of_isIso₂, IsZero.iff_isSplitMono_eq_zero, CategoryTheory.ShortComplex.Exact.isZero_X₂, CategoryTheory.ShortComplex.Exact.isZero_X₂_iff, CategoryTheory.Pretriangulated.Triangle.isZero₁_iff, HomologicalComplex.ExactAt.isZero_homology, CokernelCofork.IsColimit.isZero_of_epi, CategoryTheory.hasInjectiveDimensionLT_zero_iff_isZero, IsZero.of_epi_eq_zero, CategoryTheory.ObjectProperty.ContainsZero.exists_zero, CategoryTheory.Functor.isZero_rightDerived_obj_injective_succ, isZero_groupHomology_succ_of_subsingleton, CategoryTheory.Pretriangulated.Triangle.isZero₁_iff_isIso₂, CategoryTheory.ShortComplex.HomologyData.exact_iff', CategoryTheory.isZero_Tor_succ_of_projective, CategoryTheory.ObjectProperty.instContainsZeroIsZeroOfHasZeroObject, AlgebraicTopology.isZero_singularHomologyFunctor_of_totallyDisconnectedSpace, HomologicalComplex.isZero_single_comp_eval, ModuleCat.isZero_of_subsingleton, ModuleCat.isZero_of_iff_subsingleton, CochainComplex.isZero_of_isLE

Theorems

NameKindAssumesProvesValidatesDepends On
hasZeroObject_op 📖mathematicalHasZeroObject
Opposite
CategoryTheory.Category.opposite
IsZero.op
isZero_zero
hasZeroObject_pUnit 📖mathematicalHasZeroObject
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.instSubsingletonDiscreteHom
hasZeroObject_unop 📖mathematicalHasZeroObjectIsZero.unop
isZero_zero
isZero_zero 📖mathematicalIsZero
HasZeroObject.zero'
HasZeroObject.zero

CategoryTheory.Limits.HasZeroObject

Definitions

NameCategoryTheorems
uniqueFrom 📖CompOp
uniqueTo 📖CompOp
zero' 📖CompOp
111 mathmath: CategoryTheory.Limits.zero_of_from_zero, CategoryTheory.BicartesianSq.of_is_biproduct₁, CategoryTheory.Limits.monoFactorisationZero_I, CategoryTheory.IsPushout.of_is_bilimit', CategoryTheory.instHasProjectiveDimensionLTOfNatNat, HomologicalComplex.instIsStrictlySupportedOfNat, CategoryTheory.Limits.hasBinaryCoproduct_zero_left, zeroIsoIsInitial_inv, CategoryTheory.IsPushout.zero_top, CategoryTheory.zero_map, CategoryTheory.Limits.monoFactorisationZero_e, CategoryTheory.IsPullback.inr_fst, CategoryTheory.Limits.isoZeroOfEpiZero_hom, CategoryTheory.Injective.instHasLiftingPropertyOfMono, CategoryTheory.ShortComplex.Splitting.rightHomologyData_ι, zeroIsoTerminal_inv, CategoryTheory.IsPullback.zero_top, zero_to_zero_isIso, CategoryTheory.ShortComplex.Splitting.leftHomologyData_H, CategoryTheory.Limits.isZero_zero, zeroIsoTerminal_hom, CategoryTheory.IsPushout.inl_snd', CategoryTheory.BicartesianSq.of_has_biproduct₂, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_H, CategoryTheory.Limits.monoFactorisationZero_m, CategoryTheory.Limits.inr_pushoutZeroZeroIso_hom, CategoryTheory.IsPushout.zero_bot, CategoryTheory.IsPushout.zero_left, CategoryTheory.Limits.inr_zeroCoprodIso_hom, CategoryTheory.Limits.pullbackZeroZeroIso_inv_fst, CategoryTheory.Limits.pullbackZeroZeroIso_hom_snd, instSubsingletonIsoOfNat, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₃, CategoryTheory.Pretriangulated.contractibleTriangle_mor₂, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₃, CategoryTheory.Limits.idZeroEquivIsoZero_apply_inv, CategoryTheory.Limits.zero_of_to_zero, CategoryTheory.Functor.zero_obj, CategoryTheory.Limits.id_zero, CategoryTheory.IsPushout.inr_fst, CategoryTheory.Pretriangulated.contractible_distinguished₂, CategoryTheory.IsPullback.inl_snd, CategoryTheory.IsPushout.of_hasBinaryCoproduct, CategoryTheory.IsPullback.of_hasBinaryProduct, CategoryTheory.Limits.prodZeroIso_hom, CategoryTheory.projective_iff_llp_epimorphisms_zero, zeroIsoIsTerminal_hom, CategoryTheory.Functor.mapZeroObject_inv, CategoryTheory.Limits.coprodZeroIso_inv, CategoryTheory.Limits.zeroProdIso_hom, CategoryTheory.Limits.hasBinaryCoproduct_zero_right, CategoryTheory.Injective.zero_injective, CategoryTheory.ShortComplex.Splitting.leftHomologyData_π, CategoryTheory.IsPullback.zero_left, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.Pretriangulated.contractibleTriangle_obj₃, CategoryTheory.Limits.idZeroEquivIsoZero_apply_hom, CategoryTheory.IsPushout.of_isBilimit, CategoryTheory.IsPushout.inr_fst', CategoryTheory.Limits.isoZeroOfMonoZero_inv, CategoryTheory.instHasInjectiveDimensionLTOfNatNat, CategoryTheory.IsPullback.of_hasBinaryBiproduct, CategoryTheory.IsPushout.inl_snd, CategoryTheory.IsPullback.of_is_bilimit', CategoryTheory.Limits.pullbackZeroZeroIso_hom_fst, zeroIsoInitial_inv, CategoryTheory.IsPullback.inl_snd', CategoryTheory.IsPullback.of_has_biproduct, CategoryTheory.Limits.prodZeroIso_iso_inv_snd, CategoryTheory.Subobject.bot_eq_zero, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CategoryTheory.Limits.inr_pushoutZeroZeroIso_inv, CategoryTheory.IsPullback.zero_bot, CategoryTheory.Projective.zero_projective, CategoryTheory.IsPullback.zero_right, CategoryTheory.Pretriangulated.contractibleTriangle_mor₃, CategoryTheory.Limits.isoZeroOfEpiZero_inv, CategoryTheory.Limits.zeroProdIso_inv_snd, CategoryTheory.IsPushout.of_hasBinaryBiproduct, CategoryTheory.BicartesianSq.of_is_biproduct₂, CategoryTheory.Triangulated.instNonemptyOctahedron, CategoryTheory.Limits.pullbackZeroZeroIso_inv_snd, CategoryTheory.BicartesianSq.of_has_biproduct₁, CategoryTheory.ObjectProperty.prop_zero, CategoryTheory.IsPullback.of_isBilimit, zeroIsoIsInitial_hom, CategoryTheory.Limits.inl_pushoutZeroZeroIso_inv, instMono, CategoryTheory.IsPushout.zero_right, CategoryTheory.Limits.isoZeroOfMonoZero_hom, CategoryTheory.ShortComplex.exact_iff_homology_iso_zero, instEpi, CategoryTheory.IsPushout.of_has_biproduct, CategoryTheory.Projective.instHasLiftingPropertyOfEpi, CategoryTheory.Limits.hasBinaryProduct_zero_right, zeroIsoIsTerminal_inv, CategoryTheory.Limits.hasBinaryProduct_zero_left, CategoryTheory.Limits.hasPullback_over_zero, CategoryTheory.IsPullback.inr_fst', CategoryTheory.Limits.hasPushout_over_zero, CategoryTheory.ShortComplex.Splitting.rightHomologyData_H, CategoryTheory.Pretriangulated.contractible_distinguished₁, CategoryTheory.injective_iff_rlp_monomorphisms_zero, CategoryTheory.Functor.mapZeroObject_hom, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_H, CategoryTheory.Limits.inl_pushoutZeroZeroIso_hom, zeroIsoInitial_hom, CategoryTheory.Limits.inr_coprodZeroIso_hom, CategoryTheory.Limits.zeroCoprodIso_inv, CategoryTheory.ShortComplex.Splitting.homologyData_iso
zeroIsInitial 📖CompOp
zeroIsTerminal 📖CompOp
zeroIsoInitial 📖CompOp
2 mathmath: zeroIsoInitial_inv, zeroIsoInitial_hom
zeroIsoIsInitial 📖CompOp
2 mathmath: zeroIsoIsInitial_inv, zeroIsoIsInitial_hom
zeroIsoIsTerminal 📖CompOp
2 mathmath: zeroIsoIsTerminal_hom, zeroIsoIsTerminal_inv
zeroIsoTerminal 📖CompOp
2 mathmath: zeroIsoTerminal_inv, zeroIsoTerminal_hom

Theorems

NameKindAssumesProvesValidatesDepends On
from_zero_ext 📖CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Limits.isZero_zero
from_zero_ext_iff 📖from_zero_ext
hasInitial 📖mathematicalCategoryTheory.Limits.HasInitialCategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
hasTerminal 📖mathematicalCategoryTheory.Limits.HasTerminalCategoryTheory.Limits.hasTerminal_of_unique
Unique.instSubsingleton
initialMonoClass 📖mathematicalCategoryTheory.Limits.InitialMonoClassCategoryTheory.Limits.InitialMonoClass.of_isInitial
instMono
instEpi 📖mathematicalCategoryTheory.Epi
zero'
from_zero_ext
instMono 📖mathematicalCategoryTheory.Mono
zero'
to_zero_ext
instSubsingletonIsoOfNat 📖mathematicalCategoryTheory.Iso
zero'
CategoryTheory.Iso.ext
to_zero_ext
to_zero_ext 📖CategoryTheory.Limits.IsZero.eq_of_tgt
CategoryTheory.Limits.isZero_zero
to_zero_ext_iff 📖to_zero_ext
zero 📖mathematicalCategoryTheory.Limits.IsZero
zero_to_zero_isIso 📖mathematicalCategoryTheory.IsIso
zero'
Unique.instSubsingleton
CategoryTheory.IsIso.id

CategoryTheory.Limits.IsZero

Definitions

NameCategoryTheorems
from_ 📖CompOp
2 mathmath: from_eq, eq_from
isInitial 📖CompOp
isTerminal 📖CompOp
iso 📖CompOp
2 mathmath: CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₃, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₃
isoIsInitial 📖CompOp
isoIsTerminal 📖CompOp
isoZero 📖CompOp
to_ 📖CompOp
2 mathmath: eq_to, to_eq

Theorems

NameKindAssumesProvesValidatesDepends On
epi 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Epieq_of_src
eq_from 📖mathematicalCategoryTheory.Limits.IsZerofrom_Unique.eq_default
unique_from
eq_of_src 📖CategoryTheory.Limits.IsZeroeq_to
eq_of_tgt 📖CategoryTheory.Limits.IsZeroeq_from
eq_to 📖mathematicalCategoryTheory.Limits.IsZeroto_Unique.eq_default
unique_to
from_eq 📖mathematicalCategoryTheory.Limits.IsZerofrom_eq_from
hasZeroObject 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Limits.HasZeroObject
mono 📖mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Monoeq_of_tgt
obj 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.objCategoryTheory.Functor.isZero
CategoryTheory.Limits.isZero_zero
of_iso
of_full_of_faithful_of_isZero 📖CategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
unique_to
unique_from
of_iso 📖CategoryTheory.Limits.IsZeroCategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
eq_of_src
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
eq_of_tgt
op 📖mathematicalCategoryTheory.Limits.IsZeroOpposite
CategoryTheory.Category.opposite
Opposite.op
eq_of_tgt
eq_of_src
to_eq 📖mathematicalCategoryTheory.Limits.IsZeroto_eq_to
unique_from 📖mathematicalCategoryTheory.Limits.IsZeroUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unique_to 📖mathematicalCategoryTheory.Limits.IsZeroUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unop 📖mathematicalCategoryTheory.Limits.IsZero
Opposite
CategoryTheory.Category.opposite
Opposite.unopeq_of_tgt
eq_of_src

---

← Back to Index