ZeroObjects
📁 Source: Mathlib/CategoryTheory/Limits/Shapes/ZeroObjects.lean
Statistics
| Metric | Count |
|---|---|
| 19 | |
TheoremsisZero, isZero_iff, isZero_iff, from_zero_ext, from_zero_ext_iff, hasInitial, hasTerminal, initialMonoClass, instEpi, instMono, instSubsingletonIsoOfNat, to_zero_ext, to_zero_ext_iff, zero, zero_to_zero_isIso, epi, eq_from, eq_of_src, eq_of_tgt, eq_to, from_eq, hasZeroObject, mono, obj, of_full_of_faithful_of_isZero, of_iso, op, to_eq, unique_from, unique_to, unop, hasZeroObject_op, hasZeroObject_pUnit, hasZeroObject_unop, isZero_zero | 35 |
| Total | 54 |
CategoryTheory.Functor
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isZero 📖 | mathematical | CategoryTheory.Limits.IsZeroobj | CategoryTheory.Functorcategory | — | CategoryTheory.Limits.IsZero.eq_of_srcCategoryTheory.NatTrans.ext'CategoryTheory.Limits.IsZero.eq_of_tgt |
isZero_iff 📖 | mathematical | — | CategoryTheory.Limits.IsZeroCategoryTheory.Functorcategoryobj | — | CategoryTheory.Limits.IsZero.objisZero |
CategoryTheory.Iso
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isZero_iff 📖 | mathematical | — | CategoryTheory.Limits.IsZero | — | CategoryTheory.Limits.IsZero.of_iso |
CategoryTheory.Limits
Definitions
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
hasZeroObject_op 📖 | mathematical | — | HasZeroObjectOppositeCategoryTheory.Category.opposite | — | IsZero.opisZero_zero |
hasZeroObject_pUnit 📖 | mathematical | — | HasZeroObjectCategoryTheory.DiscreteCategoryTheory.discreteCategory | — | CategoryTheory.Discrete.instSubsingletonDiscreteHom |
hasZeroObject_unop 📖 | mathematical | — | HasZeroObject | — | IsZero.unopisZero_zero |
isZero_zero 📖 | mathematical | — | IsZeroHasZeroObject.zero' | — | HasZeroObject.zero |
CategoryTheory.Limits.HasZeroObject
Definitions
Theorems
CategoryTheory.Limits.IsZero
Definitions
| Name | Category | Theorems |
|---|---|---|
from_ 📖 | CompOp | |
isInitial 📖 | CompOp | — |
isTerminal 📖 | CompOp | — |
iso 📖 | CompOp | |
isoIsInitial 📖 | CompOp | — |
isoIsTerminal 📖 | CompOp | — |
isoZero 📖 | CompOp | — |
to_ 📖 | CompOp |
Theorems
---