Documentation

Mathlib.CategoryTheory.Limits.Shapes.ZeroObjects

Zero objects #

A category "has a zero object" if it has an object which is both initial and terminal. Having a zero object provides zero morphisms, as the unique morphisms factoring through the zero object; see CategoryTheory.Limits.Shapes.ZeroMorphisms.

References #

structure CategoryTheory.Limits.IsZero {C : Type u} [Category.{v, u} C] (X : C) :

An object X in a category is a zero object if for every object Y there is a unique morphism to : X โ†’ Y and a unique morphism from : Y โ†’ X.

This is a characteristic predicate for HasZeroObject.

Instances For
    def CategoryTheory.Limits.IsZero.to_ {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) (Y : C) :

    If h : IsZero X, then h.to_ Y is a choice of unique morphism X โ†’ Y.

    to is a reserved word, it was replaced by to_

    Equations
      Instances For
        def CategoryTheory.Limits.IsZero.from_ {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) (Y : C) :

        If h : is_zero X, then h.from_ Y is a choice of unique morphism Y โ†’ X.

        from is a reserved word, it was replaced by from_

        Equations
          Instances For
            theorem CategoryTheory.Limits.IsZero.eq_of_src {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (f g : X โŸถ Y) :
            f = g
            theorem CategoryTheory.Limits.IsZero.eq_of_tgt {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (f g : Y โŸถ X) :
            f = g
            theorem CategoryTheory.Limits.IsZero.epi {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) {Y : C} (f : Y โŸถ X) :
            Epi f
            theorem CategoryTheory.Limits.IsZero.mono {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) {Y : C} (f : X โŸถ Y) :
            def CategoryTheory.Limits.IsZero.iso {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (hY : IsZero Y) :

            Any two zero objects are isomorphic.

            Equations
              Instances For

                A zero object is in particular initial.

                Equations
                  Instances For

                    A zero object is in particular terminal.

                    Equations
                      Instances For

                        The (unique) isomorphism between any initial object and the zero object.

                        Equations
                          Instances For

                            The (unique) isomorphism between any terminal object and the zero object.

                            Equations
                              Instances For
                                theorem CategoryTheory.Limits.IsZero.of_iso {C : Type u} [Category.{v, u} C] {X Y : C} (hY : IsZero Y) (e : X โ‰… Y) :
                                theorem CategoryTheory.Functor.isZero {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) (hF : โˆ€ (X : C), Limits.IsZero (F.obj X)) :

                                A category "has a zero object" if it has an object which is both initial and terminal.

                                • zero : โˆƒ (X : C), IsZero X

                                  there exists a zero object

                                Instances

                                  Construct a Zero C for a category with a zero object. This cannot be a global instance as it will trigger for every Zero C typeclass search.

                                  Equations
                                    Instances For

                                      Every zero object is isomorphic to the zero object.

                                      Equations
                                        Instances For

                                          There is a unique morphism from the zero object to any object X.

                                          Equations
                                            Instances For

                                              There is a unique morphism from any object X to the zero object.

                                              Equations
                                                Instances For

                                                  A zero object is in particular initial.

                                                  Equations
                                                    Instances For

                                                      A zero object is in particular terminal.

                                                      Equations
                                                        Instances For
                                                          @[instance 10]

                                                          A zero object is in particular initial.

                                                          @[instance 10]

                                                          A zero object is in particular terminal.

                                                          The (unique) isomorphism between any initial object and the zero object.

                                                          Equations
                                                            Instances For

                                                              The (unique) isomorphism between any terminal object and the zero object.

                                                              Equations
                                                                Instances For

                                                                  The (unique) isomorphism between the chosen initial object and the chosen zero object.

                                                                  Equations
                                                                    Instances For

                                                                      The (unique) isomorphism between the chosen terminal object and the chosen zero object.

                                                                      Equations
                                                                        Instances For