| Name | Category | Theorems |
comp 📖 | CompOp | 1 mathmath: comp_apply
|
fullSubcategory 📖 | CompOp | 4 mathmath: CategoryTheory.Functor.fullSubcategoryInclusionLinear, FGModuleCat.instFiniteHom, CategoryTheory.ObjectProperty.instMonoidalLinearFullSubcategory, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG
|
homCongr 📖 | CompOp | 2 mathmath: homCongr_apply, homCongr_symm_apply
|
homModule 📖 | CompOp | 121 mathmath: CategoryTheory.ShortComplex.opcyclesMap_smul, Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, CategoryTheory.ShortComplex.homologyMap_smul, CategoryTheory.linearCoyoneda_map_app, CategoryTheory.Abelian.Ext.homLinearEquiv_apply, Rep.MonoidalClosed.linearHomEquiv_symm_hom, instMonoHSMulHomOfInvertible, CategoryTheory.Functor.coe_mapLinearMap, CategoryTheory.finrank_hom_simple_simple_le_one, CategoryTheory.ShortComplex.Homotopy.smul_h₁, CategoryTheory.InducedCategory.homLinearEquiv_apply, Rep.diagonalHomEquiv_symm_apply, CategoryTheory.linearYoneda_obj_map, comp_apply, CategoryTheory.finrank_hom_simple_simple_eq_one_iff, CategoryTheory.Abelian.Ext.smul_hom, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, CategoryTheory.ShortComplex.Homotopy.smul_h₂, units_smul_comp, leftComp_apply, CategoryTheory.Functor.Linear.map_smul, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φH, Action.smul_hom, CategoryTheory.Pretriangulated.Triangle.smul_hom₂, Rep.MonoidalClosed.linearHomEquivComm_hom, FDRep.instFiniteDimensionalHom, Rep.coindVEquiv_symm_apply_coe, CategoryTheory.Abelian.Ext.mk₀_smul, CategoryTheory.ShortComplex.Homotopy.smul_h₀, CategoryTheory.ShortComplex.Homotopy.smul_h₃, CategoryTheory.ShortComplex.cyclesMap_smul, FGModuleCat.instFiniteHom, CategoryTheory.finrank_endomorphism_eq_one, CategoryTheory.linearYoneda_map_app, HomologicalComplex.units_smul_f_apply, CategoryTheory.Functor.map_smul, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.coindMap'_hom, Rep.freeLiftLEquiv_apply, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_symm_apply, comp_units_smul, CategoryTheory.finrank_hom_simple_simple_eq_zero_iff, CategoryTheory.finrank_hom_simple_simple_eq_zero_of_not_iso, Rep.resIndAdjunction_homEquiv_apply, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_apply, CategoryTheory.ShortComplex.smul_τ₃, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.leftRegularHomEquiv_symm_apply, CategoryTheory.endomorphism_simple_eq_smul_id, Rep.coindResAdjunction_homEquiv_apply, CategoryTheory.ShiftedHom.comp_smul, Representation.coind'_apply_apply, Rep.coindIso_inv_hom_hom, homCongr_apply, CategoryTheory.ShortComplex.cyclesMap'_smul, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, comp_smul, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φH, CochainComplex.HomComplex.Cochain.units_smul_v, HomologicalComplex.smul_f_apply, CategoryTheory.Functor.map_units_smul, CategoryTheory.linearCoyoneda_obj_map, FDRep.simple_iff_end_is_rank_one, CochainComplex.HomComplex.Cochain.smul_v, CategoryTheory.ShortComplex.homologyMap'_smul, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, CategoryTheory.NatTrans.appLinearMap_apply, CategoryTheory.ShiftedHom.map_smul, CategoryTheory.Free.lift_map_single, CategoryTheory.Abelian.Ext.smul_eq_comp_mk₀, homCongr_symm_apply, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φK, ChainComplex.linearYonedaObj_d, Homotopy.smul_hom, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.MonoidalLinear.smul_whiskerRight, CategoryTheory.MonoidalLinear.whiskerLeft_smul, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, CategoryTheory.Pretriangulated.Triangle.smul_hom₃, CategoryTheory.linearYoneda_obj_obj_isModule, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φQ, CategoryTheory.NatTrans.app_smul, CategoryTheory.Free.lift_map, CategoryTheory.Abelian.Ext.mk₀_linearEquiv₀_apply, instEpiHSMulHomOfInvertible, Rep.leftRegularHomEquiv_apply, ModuleCat.ofHom₂_compr₂, CategoryTheory.finrank_endomorphism_simple_eq_one, CategoryTheory.ShortComplex.smul_τ₁, CategoryTheory.ShortComplex.smul_τ₂, CategoryTheory.Abelian.Ext.linearEquiv₀_symm_apply, Rep.diagonalHomEquiv_apply, CategoryTheory.Functor.linear_iff, Rep.freeLiftLEquiv_symm_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, CategoryTheory.ShortComplex.rightHomologyMap'_smul, Rep.indResHomEquiv_apply_hom, CategoryTheory.ShortComplex.rightHomologyMap_smul, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, toCatCenter_apply_app, FDRep.scalar_product_char_eq_finrank_equivariant, Representation.linHom.invariantsEquivRepHom_apply_hom, CategoryTheory.InducedCategory.homLinearEquiv_symm_apply_hom, Rep.coindIso_hom_hom_hom, CategoryTheory.ShiftedHom.smul_comp, CategoryTheory.linearCoyoneda_obj_obj_isModule, rightComp_apply, CategoryTheory.ShiftedHom.mk₀_smul, smul_comp, CategoryTheory.Pretriangulated.Triangle.smul_hom₁, CategoryTheory.ShortComplex.leftHomologyMap_smul, CategoryTheory.ShortComplex.opcyclesMap'_smul, CategoryTheory.ShortComplex.leftHomologyMap'_smul, Rep.indResHomEquiv_symm_apply_hom, CategoryTheory.Functor.mapLinearMap_apply, FDRep.finrank_hom_simple_simple
|
inducedCategory 📖 | CompOp | 3 mathmath: CategoryTheory.InducedCategory.homLinearEquiv_apply, CategoryTheory.Functor.inducedFunctorLinear, CategoryTheory.InducedCategory.homLinearEquiv_symm_apply_hom
|
instAlgebraEnd 📖 | CompOp | — |
instModuleEnd 📖 | CompOp | 2 mathmath: CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_symm_apply, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_apply
|
leftComp 📖 | CompOp | 6 mathmath: CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearYoneda_obj_map, comp_apply, leftComp_apply, CategoryTheory.linearYoneda_map_app, ChainComplex.linearYonedaObj_d
|
preadditiveIntLinear 📖 | CompOp | 1 mathmath: CategoryTheory.Functor.intLinear
|
preadditiveNatLinear 📖 | CompOp | 1 mathmath: CategoryTheory.Functor.natLinear
|
rightComp 📖 | CompOp | 6 mathmath: CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearYoneda_map_app, Rep.coindMap'_hom, CategoryTheory.linearCoyoneda_obj_map, ModuleCat.ofHom₂_compr₂, rightComp_apply
|