Documentation

Mathlib.CategoryTheory.Linear.Basic

Linear categories #

An R-linear category is a category in which X ⟶ Y is an R-module in such a way that composition of morphisms is R-linear in both variables.

Note that sometimes in the literature a "linear category" is further required to be abelian.

Implementation #

Corresponding to the fact that we need to have an AddCommGroup X structure in place to talk about a Module R X structure, we need Preadditive C as a prerequisite typeclass for Linear R C. This makes for longer signatures than would be ideal.

Future work #

It would be nice to have a usable framework of enriched categories in which this would just be a category enriched in Module R.

class CategoryTheory.Linear (R : Type w) [Semiring R] (C : Type u) [Category.{v, u} C] [Preadditive C] :
Type (max (max u v) w)

A category is called R-linear if P ⟶ Q is an R-module such that composition is R-linear in both variables.

Instances
    instance CategoryTheory.Linear.instModuleEnd {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] (X : C) :
    Module R (End X)
    Equations
      instance CategoryTheory.Linear.inducedCategory {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] {D : Type u'} (F : D → C) :
      Equations
        def CategoryTheory.InducedCategory.homLinearEquiv {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] {D : Type u'} {F : D → C} {X Y : InducedCategory C F} :

        The linear equivalence (X ⟶ Y) ≃+ (F X ⟶ F Y) when F : D → C and C is a R-linear category.

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.InducedCategory.homLinearEquiv_symm_apply_hom {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] {D : Type u'} {F : D → C} {X Y : InducedCategory C F} (a✝ : F X ⟶ F Y) :
            (homLinearEquiv.symm a✝).hom = a✝
            @[simp]
            theorem CategoryTheory.InducedCategory.homLinearEquiv_apply {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] {D : Type u'} {F : D → C} {X Y : InducedCategory C F} (a✝ : X ⟶ Y) :
            homLinearEquiv a✝ = a✝.hom
            def CategoryTheory.Linear.leftComp {C : Type u} [Category.{v, u} C] [Preadditive C] (R : Type w) [Semiring R] [Linear R C] {X Y : C} (Z : C) (f : X ⟶ Y) :

            Composition by a fixed left argument as an R-linear map.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Linear.leftComp_apply {C : Type u} [Category.{v, u} C] [Preadditive C] (R : Type w) [Semiring R] [Linear R C] {X Y : C} (Z : C) (f : X ⟶ Y) (g : Y ⟶ Z) :
                def CategoryTheory.Linear.rightComp {C : Type u} [Category.{v, u} C] [Preadditive C] (R : Type w) [Semiring R] [Linear R C] (X : C) {Y Z : C} (g : Y ⟶ Z) :

                Composition by a fixed right argument as an R-linear map.

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Linear.rightComp_apply {C : Type u} [Category.{v, u} C] [Preadditive C] (R : Type w) [Semiring R] [Linear R C] (X : C) {Y Z : C} (g : Y ⟶ Z) (f : X ⟶ Y) :
                    instance CategoryTheory.Linear.instEpiHSMulHomOfInvertible {C : Type u} [Category.{v, u} C] [Preadditive C] (R : Type w) [Semiring R] [Linear R C] {X Y : C} (f : X ⟶ Y) [Epi f] (r : R) [Invertible r] :
                    Epi (r • f)
                    def CategoryTheory.Linear.homCongr (k : Type u_1) {C : Type u_2} [Category.{v_1, u_2} C] [Semiring k] [Preadditive C] [Linear k C] {X Y W Z : C} (f₁ : X ≅ Y) (f₂ : W ≅ Z) :

                    Given isomorphic objects X ≅ Y, W ≅ Z in a k-linear category, we have a k-linear isomorphism between Hom(X, W) and Hom(Y, Z).

                    Equations
                      Instances For
                        theorem CategoryTheory.Linear.homCongr_apply (k : Type u_1) {C : Type u_2} [Category.{v_1, u_2} C] [Semiring k] [Preadditive C] [Linear k C] {X Y W Z : C} (f₁ : X ≅ Y) (f₂ : W ≅ Z) (f : X ⟶ W) :
                        (homCongr k f₁ f₂) f = CategoryStruct.comp (CategoryStruct.comp f₁.inv f) f₂.hom
                        theorem CategoryTheory.Linear.homCongr_symm_apply (k : Type u_1) {C : Type u_2} [Category.{v_1, u_2} C] [Semiring k] [Preadditive C] [Linear k C] {X Y W Z : C} (f₁ : X ≅ Y) (f₂ : W ≅ Z) (f : Y ⟶ Z) :
                        (homCongr k f₁ f₂).symm f = CategoryStruct.comp f₁.hom (CategoryStruct.comp f f₂.inv)
                        @[simp]
                        theorem CategoryTheory.Linear.units_smul_comp {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] {X Y Z : C} (r : Rˣ) (f : X ⟶ Y) (g : Y ⟶ Z) :
                        @[simp]
                        theorem CategoryTheory.Linear.comp_units_smul {C : Type u} [Category.{v, u} C] [Preadditive C] {R : Type w} [Semiring R] [Linear R C] {X Y Z : C} (f : X ⟶ Y) (r : Rˣ) (g : Y ⟶ Z) :

                        Composition as a bilinear map.

                        Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Linear.comp_apply {C : Type u} [Category.{v, u} C] [Preadditive C] {S : Type w} [CommSemiring S] [Linear S C] (X Y Z : C) (f : X ⟶ Y) :
                            (comp X Y Z) f = leftComp S Z f