Documentation Verification Report

SmallHom

πŸ“ Source: Mathlib/CategoryTheory/Localization/SmallHom.lean

Statistics

MetricCount
DefinitionsHasSmallLocalizedHom, SmallHom, chgUniv, comp, equiv, mk, mkInv, smallHomMap, smallHomMap'
9
Theoremssmall, comp_assoc, comp_mk_id, equiv_chgUniv, equiv_comp, equiv_equiv_symm, equiv_mk, equiv_mkInv, mkInv_comp_mk, mk_comp_mk, mk_comp_mkInv, mk_id_comp, hasSmallLocalizedHom_iff, hasSmallLocalizedHom_iff_of_isos, hasSmallLocalizedHom_iff_source, hasSmallLocalizedHom_iff_target, hasSmallLocalizedHom_of_isLocalization, hasSmallLocalizedHom_of_isos, small_of_hasSmallLocalizedHom, equiv_smallHomMap, equiv_smallHomMap', smallHomMap'_comp, smallHomMap'_mk, smallHomMap_comp, smallHomMap_mk
25
Total34

CategoryTheory.Localization

Definitions

NameCategoryTheorems
HasSmallLocalizedHom πŸ“–CompData
11 mathmath: hasSmallLocalizedHom_iff_of_isos, instHasSmallLocalizedHomObjShiftFunctor_1, hasSmallLocalizedHom_of_isos, hasSmallLocalizedHom_iff_source, hasSmallLocalizedHom_iff_target, instHasSmallLocalizedHomObjShiftFunctor, hasSmallLocalizedHom_of_isLocalization, instHasSmallLocalizedHomObjShiftFunctor_3, hasSmallLocalizedHom_iff, instHasSmallLocalizedHomObjShiftFunctor_2, hasSmallLocalizedHom_of_hasSmallLocalizedShiftedHomβ‚€
SmallHom πŸ“–CompOp
10 mathmath: SmallHom.equiv_equiv_symm, SmallHom.equiv_mkInv, SmallHom.equiv_mk, SmallShiftedHom.equiv_shift', CategoryTheory.LocalizerMorphism.equiv_smallHomMap', SmallHom.equiv_chgUniv, SmallHom.equiv_comp, CategoryTheory.LocalizerMorphism.equiv_smallHomMap, SmallHom.equiv_shift, SmallShiftedHom.equiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
hasSmallLocalizedHom_iff πŸ“–mathematicalβ€”HasSmallLocalizedHom
Small
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”small_map
HasSmallLocalizedHom.small
CategoryTheory.Functor.q_isLocalization
hasSmallLocalizedHom_iff_of_isos πŸ“–mathematicalβ€”HasSmallLocalizedHomβ€”hasSmallLocalizedHom_iff
CategoryTheory.Functor.q_isLocalization
small_congr
hasSmallLocalizedHom_iff_source πŸ“–mathematicalβ€”HasSmallLocalizedHomβ€”hasSmallLocalizedHom_iff
CategoryTheory.Functor.q_isLocalization
small_congr
hasSmallLocalizedHom_iff_target πŸ“–mathematicalβ€”HasSmallLocalizedHomβ€”hasSmallLocalizedHom_iff
CategoryTheory.Functor.q_isLocalization
small_congr
hasSmallLocalizedHom_of_isLocalization πŸ“–mathematicalβ€”HasSmallLocalizedHomβ€”hasSmallLocalizedHom_iff
small_self
hasSmallLocalizedHom_of_isos πŸ“–mathematicalβ€”HasSmallLocalizedHomβ€”hasSmallLocalizedHom_iff_of_isos
small_of_hasSmallLocalizedHom πŸ“–mathematicalβ€”Small
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”hasSmallLocalizedHom_iff

CategoryTheory.Localization.HasSmallLocalizedHom

Theorems

NameKindAssumesProvesValidatesDepends On
small πŸ“–mathematicalβ€”Small
Quiver.Hom
CategoryTheory.MorphismProperty.Localization
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.Functor.obj
CategoryTheory.MorphismProperty.Q
β€”β€”

CategoryTheory.Localization.SmallHom

Definitions

NameCategoryTheorems
chgUniv πŸ“–CompOp
1 mathmath: equiv_chgUniv
comp πŸ“–CompOp
9 mathmath: CategoryTheory.LocalizerMorphism.smallHomMap_comp, comp_mk_id, mk_comp_mk, comp_assoc, equiv_comp, CategoryTheory.LocalizerMorphism.smallHomMap'_comp, mk_comp_mkInv, mk_id_comp, mkInv_comp_mk
equiv πŸ“–CompOp
10 mathmath: equiv_equiv_symm, equiv_mkInv, equiv_mk, CategoryTheory.Localization.SmallShiftedHom.equiv_shift', CategoryTheory.LocalizerMorphism.equiv_smallHomMap', equiv_chgUniv, equiv_comp, CategoryTheory.LocalizerMorphism.equiv_smallHomMap, equiv_shift, CategoryTheory.Localization.SmallShiftedHom.equiv_apply
mk πŸ“–CompOpβ€”
mkInv πŸ“–CompOp
3 mathmath: equiv_mkInv, mk_comp_mkInv, mkInv_comp_mk

Theorems

NameKindAssumesProvesValidatesDepends On
comp_assoc πŸ“–mathematicalβ€”compβ€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.Category.assoc
comp_mk_id πŸ“–mathematicalβ€”comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
equiv_chgUniv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
chgUniv
β€”CategoryTheory.Functor.q_isLocalization
Equiv.surjective
Equiv.apply_symm_apply
equiv_equiv_symm
equiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
comp
CategoryTheory.CategoryStruct.comp
β€”CategoryTheory.Localization.HasSmallLocalizedHom.small
Equiv.surjective
CategoryTheory.Functor.q_isLocalization
Equiv.symm_apply_apply
CategoryTheory.Localization.homEquiv_refl
CategoryTheory.Localization.homEquiv_comp
equiv_equiv_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
Equiv.symm
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
β€”CategoryTheory.Functor.q_isLocalization
CategoryTheory.Localization.HasSmallLocalizedHom.small
Equiv.symm_apply_apply
CategoryTheory.Localization.homEquiv_trans
CategoryTheory.Localization.homEquiv_eq
equiv_mk πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
CategoryTheory.Functor.map
β€”CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Functor.q_isLocalization
CategoryTheory.Localization.homEquiv_refl
Equiv.symm_apply_apply
CategoryTheory.Localization.homEquiv_map
equiv_mkInv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
equiv
mkInv
CategoryTheory.Iso.inv
CategoryTheory.Localization.isoOfHom
β€”CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Functor.q_isLocalization
CategoryTheory.Localization.homEquiv_isoOfHom_inv
Equiv.symm_apply_apply
mkInv_comp_mk πŸ“–mathematicalβ€”comp
mkInv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
equiv_mkInv
CategoryTheory.Localization.isoOfHom_inv_hom_id
CategoryTheory.Functor.map_id
mk_comp_mk πŸ“–mathematicalβ€”comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.Functor.map_comp
mk_comp_mkInv πŸ“–mathematicalβ€”comp
mkInv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
equiv_mkInv
CategoryTheory.Localization.isoOfHom_hom_inv_id
CategoryTheory.Functor.map_id
mk_id_comp πŸ“–mathematicalβ€”comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp

CategoryTheory.LocalizerMorphism

Definitions

NameCategoryTheorems
smallHomMap πŸ“–CompOp
3 mathmath: smallHomMap_comp, smallHomMap_mk, equiv_smallHomMap
smallHomMap' πŸ“–CompOp
3 mathmath: equiv_smallHomMap', smallHomMap'_mk, smallHomMap'_comp

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_smallHomMap πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
CategoryTheory.Functor.obj
functor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Localization.SmallHom.equiv
smallHomMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
β€”CategoryTheory.Functor.q_isLocalization
Equiv.surjective
Equiv.apply_symm_apply
CategoryTheory.Localization.SmallHom.equiv_equiv_symm
CategoryTheory.Localization.liftNatTrans_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatIso.naturality_1
CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.instIsSplitEpiMap
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.Iso.inv_hom_id_app
equiv_smallHomMap' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Localization.SmallHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Localization.SmallHom.equiv
smallHomMap'
CategoryTheory.CategoryStruct.comp
functor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”CategoryTheory.Localization.hasSmallLocalizedHom_of_isos
CategoryTheory.Localization.SmallHom.equiv_comp
equiv_smallHomMap
CategoryTheory.Category.assoc
smallHomMap'_comp πŸ“–mathematicalβ€”smallHomMap'
CategoryTheory.Localization.SmallHom.comp
β€”CategoryTheory.Localization.hasSmallLocalizedHom_of_isos
smallHomMap_comp
CategoryTheory.Localization.SmallHom.comp_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Localization.SmallHom.mk_id_comp
smallHomMap'_mk πŸ“–mathematicalβ€”smallHomMap'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
β€”β€”
smallHomMap_comp πŸ“–mathematicalβ€”smallHomMap
CategoryTheory.Localization.SmallHom.comp
CategoryTheory.Functor.obj
functor
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_smallHomMap
CategoryTheory.Localization.SmallHom.equiv_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
smallHomMap_mk πŸ“–mathematicalβ€”smallHomMap
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.map
β€”Equiv.injective
CategoryTheory.Functor.q_isLocalization
equiv_smallHomMap
CategoryTheory.CatCommSq.iso_inv_naturality
CategoryTheory.Iso.hom_inv_id_app_assoc

---

← Back to Index