Documentation

Mathlib.CategoryTheory.Localization.SmallHom

Shrinking morphisms in localized categories #

Given a class of morphisms W : MorphismProperty C, and two objects X and Y, we introduce a type-class HasSmallLocalizedHom.{w} W X Y which expresses that in the localized category with respect to W, the type of morphisms from X to Y is w-small for a certain universe w. Under this assumption, we define SmallHom.{w} W X Y : Type w as the shrunk type. For any localization functor L : C ℤ D for W, we provide a bijection SmallHom.equiv.{w} W L : SmallHom.{w} W X Y ā‰ƒ (L.obj X ⟶ L.obj Y) that is compatible with the composition of morphisms.

This property holds if the type of morphisms between X and Y in the localized category with respect to W : MorphismProperty C is small.

Instances

    The type of morphisms from X to Y in the localized category with respect to W : MorphismProperty C that is shrunk to Type w when HasSmallLocalizedHom.{w} W X Y holds.

    Equations
      Instances For
        noncomputable def CategoryTheory.Localization.SmallHom.equiv {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (L : Functor C D) [L.IsLocalization W] {X Y : C} [HasSmallLocalizedHom W X Y] :
        SmallHom W X Y ā‰ƒ (L.obj X ⟶ L.obj Y)

        The canonical bijection SmallHom.{w} W X Y ā‰ƒ (L.obj X ⟶ L.obj Y) when L is a localization functor for W : MorphismProperty C and that HasSmallLocalizedHom.{w} W X Y holds.

        Equations
          Instances For
            theorem CategoryTheory.Localization.SmallHom.equiv_equiv_symm {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] {D' : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D'] (L : Functor C D) [L.IsLocalization W] (L' : Functor C D') [L'.IsLocalization W] (G : Functor D D') (e : L.comp G ≅ L') {X Y : C} [HasSmallLocalizedHom W X Y] (f : L.obj X ⟶ L.obj Y) :
            (equiv W L') ((equiv W L).symm f) = CategoryStruct.comp (e.inv.app X) (CategoryStruct.comp (G.map f) (e.hom.app Y))
            noncomputable def CategoryTheory.Localization.SmallHom.mk {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {X Y : C} [HasSmallLocalizedHom W X Y] (f : X ⟶ Y) :
            SmallHom W X Y

            The element in SmallHom W X Y induced by f : X ⟶ Y.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Localization.SmallHom.equiv_mk {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (L : Functor C D) [L.IsLocalization W] {X Y : C} [HasSmallLocalizedHom W X Y] (f : X ⟶ Y) :
                (equiv W L) (mk W f) = L.map f
                noncomputable def CategoryTheory.Localization.SmallHom.mkInv {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {X Y : C} (f : Y ⟶ X) (hf : W f) [HasSmallLocalizedHom W X Y] :
                SmallHom W X Y

                The formal inverse in SmallHom W X Y of a morphism f : Y ⟶ X such that W f.

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Localization.SmallHom.equiv_mkInv {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (L : Functor C D) [L.IsLocalization W] {X Y : C} (f : Y ⟶ X) (hf : W f) [HasSmallLocalizedHom W X Y] :
                    (equiv W L) (mkInv f hf) = (isoOfHom L W f hf).inv
                    noncomputable def CategoryTheory.Localization.SmallHom.comp {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {X Y Z : C} [HasSmallLocalizedHom W X Y] [HasSmallLocalizedHom W Y Z] [HasSmallLocalizedHom W X Z] (α : SmallHom W X Y) (β : SmallHom W Y Z) :
                    SmallHom W X Z

                    The composition on SmallHom W.

                    Equations
                      Instances For
                        theorem CategoryTheory.Localization.SmallHom.equiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {D : Type uā‚‚} [Category.{vā‚‚, uā‚‚} D] (L : Functor C D) [L.IsLocalization W] {X Y Z : C} [HasSmallLocalizedHom W X Y] [HasSmallLocalizedHom W Y Z] [HasSmallLocalizedHom W X Z] (α : SmallHom W X Y) (β : SmallHom W Y Z) :
                        (equiv W L) (α.comp β) = CategoryStruct.comp ((equiv W L) α) ((equiv W L) β)
                        @[simp]
                        theorem CategoryTheory.Localization.SmallHom.comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {W : MorphismProperty C} {X Y Z T : C} [HasSmallLocalizedHom W X Y] [HasSmallLocalizedHom W X Z] [HasSmallLocalizedHom W X T] [HasSmallLocalizedHom W Y Z] [HasSmallLocalizedHom W Y T] [HasSmallLocalizedHom W Z T] (α : SmallHom W X Y) (β : SmallHom W Y Z) (γ : SmallHom W Z T) :
                        (α.comp β).comp γ = α.comp (β.comp γ)

                        Up to an equivalence, the type SmallHom.{w} W X Y n does not depend on the universe w.

                        Equations
                          Instances For
                            noncomputable def CategoryTheory.LocalizerMorphism.smallHomMap {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} (Φ : LocalizerMorphism W₁ Wā‚‚) {X Y : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] [Localization.HasSmallLocalizedHom Wā‚‚ (Φ.functor.obj X) (Φ.functor.obj Y)] (f : Localization.SmallHom W₁ X Y) :
                            Localization.SmallHom Wā‚‚ (Φ.functor.obj X) (Φ.functor.obj Y)

                            The action of a localizer morphism on SmallHom.

                            Equations
                              Instances For
                                theorem CategoryTheory.LocalizerMorphism.equiv_smallHomMap {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} {D₁ : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D₁] {Dā‚‚ : Type uā‚„} [Category.{vā‚„, uā‚„} Dā‚‚] (Φ : LocalizerMorphism W₁ Wā‚‚) (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (Lā‚‚ : Functor Cā‚‚ Dā‚‚) [Lā‚‚.IsLocalization Wā‚‚] {X Y : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] [Localization.HasSmallLocalizedHom Wā‚‚ (Φ.functor.obj X) (Φ.functor.obj Y)] (G : Functor D₁ Dā‚‚) (e : Φ.functor.comp Lā‚‚ ≅ L₁.comp G) (f : Localization.SmallHom W₁ X Y) :
                                @[simp]
                                theorem CategoryTheory.LocalizerMorphism.smallHomMap_mk {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} (Φ : LocalizerMorphism W₁ Wā‚‚) {X Y : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] [Localization.HasSmallLocalizedHom Wā‚‚ (Φ.functor.obj X) (Φ.functor.obj Y)] (f : X ⟶ Y) :
                                theorem CategoryTheory.LocalizerMorphism.smallHomMap_comp {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} (Φ : LocalizerMorphism W₁ Wā‚‚) {X Y Z : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] [Localization.HasSmallLocalizedHom W₁ Y Z] [Localization.HasSmallLocalizedHom W₁ X Z] [Localization.HasSmallLocalizedHom Wā‚‚ (Φ.functor.obj X) (Φ.functor.obj Y)] [Localization.HasSmallLocalizedHom Wā‚‚ (Φ.functor.obj Y) (Φ.functor.obj Z)] [Localization.HasSmallLocalizedHom Wā‚‚ (Φ.functor.obj X) (Φ.functor.obj Z)] (f : Localization.SmallHom W₁ X Y) (g : Localization.SmallHom W₁ Y Z) :
                                Φ.smallHomMap (f.comp g) = (Φ.smallHomMap f).comp (Φ.smallHomMap g)
                                noncomputable def CategoryTheory.LocalizerMorphism.smallHomMap' {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} (Φ : LocalizerMorphism W₁ Wā‚‚) {X Y : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] {X' Y' : Cā‚‚} [Localization.HasSmallLocalizedHom Wā‚‚ X' X'] [Localization.HasSmallLocalizedHom Wā‚‚ X' Y'] [Localization.HasSmallLocalizedHom Wā‚‚ Y' Y'] (eX : Φ.functor.obj X ≅ X') (eY : Φ.functor.obj Y ≅ Y') (f : Localization.SmallHom W₁ X Y) :
                                Localization.SmallHom Wā‚‚ X' Y'

                                The action of a localizer morphism Φ on SmallHom. In this version, we allow the replacement of objects Φ.functor.obj by isomorphic objects.

                                Equations
                                  Instances For
                                    theorem CategoryTheory.LocalizerMorphism.equiv_smallHomMap' {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} {D₁ : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D₁] {Dā‚‚ : Type uā‚„} [Category.{vā‚„, uā‚„} Dā‚‚] (Φ : LocalizerMorphism W₁ Wā‚‚) (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (Lā‚‚ : Functor Cā‚‚ Dā‚‚) [Lā‚‚.IsLocalization Wā‚‚] {X Y : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] {X' Y' : Cā‚‚} [Localization.HasSmallLocalizedHom Wā‚‚ X' X'] [Localization.HasSmallLocalizedHom Wā‚‚ X' Y'] [Localization.HasSmallLocalizedHom Wā‚‚ Y' Y'] (eX : Φ.functor.obj X ≅ X') (eY : Φ.functor.obj Y ≅ Y') (G : Functor D₁ Dā‚‚) (e : Φ.functor.comp Lā‚‚ ≅ L₁.comp G) (f : Localization.SmallHom W₁ X Y) :
                                    (Localization.SmallHom.equiv Wā‚‚ Lā‚‚) (Φ.smallHomMap' eX eY f) = CategoryStruct.comp (Lā‚‚.map eX.inv) (CategoryStruct.comp (e.hom.app X) (CategoryStruct.comp (G.map ((Localization.SmallHom.equiv W₁ L₁) f)) (CategoryStruct.comp (e.inv.app Y) (Lā‚‚.map eY.hom))))
                                    @[simp]
                                    theorem CategoryTheory.LocalizerMorphism.smallHomMap'_mk {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} (Φ : LocalizerMorphism W₁ Wā‚‚) {X Y : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] {X' Y' : Cā‚‚} [Localization.HasSmallLocalizedHom Wā‚‚ X' X'] [Localization.HasSmallLocalizedHom Wā‚‚ X' Y'] [Localization.HasSmallLocalizedHom Wā‚‚ Y' Y'] (eX : Φ.functor.obj X ≅ X') (eY : Φ.functor.obj Y ≅ Y') (f : X ⟶ Y) :
                                    theorem CategoryTheory.LocalizerMorphism.smallHomMap'_comp {C₁ : Type u₁} [Category.{v₁, u₁} C₁] {W₁ : MorphismProperty C₁} {Cā‚‚ : Type uā‚‚} [Category.{vā‚‚, uā‚‚} Cā‚‚] {Wā‚‚ : MorphismProperty Cā‚‚} (Φ : LocalizerMorphism W₁ Wā‚‚) {X Y Z : C₁} [Localization.HasSmallLocalizedHom W₁ X Y] [Localization.HasSmallLocalizedHom W₁ Y Z] [Localization.HasSmallLocalizedHom W₁ X Z] {X' Y' Z' : Cā‚‚} [Localization.HasSmallLocalizedHom Wā‚‚ X' X'] [Localization.HasSmallLocalizedHom Wā‚‚ Y' Y'] [Localization.HasSmallLocalizedHom Wā‚‚ Z' Z'] [Localization.HasSmallLocalizedHom Wā‚‚ X' Y'] [Localization.HasSmallLocalizedHom Wā‚‚ Y' Z'] [Localization.HasSmallLocalizedHom Wā‚‚ X' Z'] (eX : Φ.functor.obj X ≅ X') (eY : Φ.functor.obj Y ≅ Y') (eZ : Φ.functor.obj Z ≅ Z') (f : Localization.SmallHom W₁ X Y) (g : Localization.SmallHom W₁ Y Z) :
                                    Φ.smallHomMap' eX eZ (f.comp g) = (Φ.smallHomMap' eX eY f).comp (Φ.smallHomMap' eY eZ g)