Documentation Verification Report

Bimod

📁 Source: Mathlib/CategoryTheory/Monoidal/Bimod.lean

Statistics

MetricCount
DefinitionsBimod, hom, homAux, inv, invAux, hom, hom, inv, hom, inv, X, actLeft, actRight, X, actLeft, actRight, associatorBimod, comp, forget, homInhabited, id', instCategory, instInhabited, isoOfIso, leftUnitorBimod, monBicategory, regular, rightUnitorBimod, tensorBimod, whiskerLeft, whiskerRight
31
Theoremshom_inv_id, hom_left_act_hom', hom_right_act_hom', inv_hom_id, ext, ext_iff, left_act_hom, left_act_hom_assoc, right_act_hom, right_act_hom_assoc, hom_inv_id, hom_left_act_hom', hom_right_act_hom', inv_hom_id, hom_inv_id, hom_left_act_hom', hom_right_act_hom', inv_hom_id, actRight_one', left_assoc', middle_assoc', one_act_left', right_assoc', whiskerLeft_π_actLeft, π_tensor_id_actRight, actRight_one, actRight_one_assoc, comp_hom, comp_hom', comp_whiskerLeft_bimod, comp_whiskerRight_bimod, hom_ext, hom_ext_iff, id'_hom, id_hom', id_whiskerLeft_bimod, id_whiskerRight_bimod, isoOfIso_hom_hom, isoOfIso_inv_hom, left_assoc, left_assoc_assoc, middle_assoc, middle_assoc_assoc, one_actLeft, one_actLeft_assoc, pentagon_bimod, regular_X, regular_actLeft, regular_actRight, right_assoc, right_assoc_assoc, tensorBimod_X, tensorBimod_actLeft, tensorBimod_actRight, triangle_bimod, whiskerLeft_comp_bimod, whiskerLeft_hom, whiskerLeft_id_bimod, whiskerRight_comp_bimod, whiskerRight_hom, whiskerRight_id_bimod, whisker_assoc_bimod, whisker_exchange_bimod, id_tensor_π_preserves_coequalizer_inv_colimMap_desc, id_tensor_π_preserves_coequalizer_inv_desc, π_tensor_id_preserves_coequalizer_inv_colimMap_desc, π_tensor_id_preserves_coequalizer_inv_desc
67
Total98

Bimod

Definitions

NameCategoryTheorems
X 📖CompOp
36 mathmath: TensorBimod.π_tensor_id_actRight, AssociatorBimod.hom_left_act_hom', RightUnitorBimod.hom_right_act_hom', RightUnitorBimod.inv_hom_id, LeftUnitorBimod.hom_right_act_hom', whiskerLeft_hom, TensorBimod.whiskerLeft_π_actLeft, actRight_one, left_assoc_assoc, right_assoc, LeftUnitorBimod.inv_hom_id, right_assoc_assoc, Hom.left_act_hom, comp_hom, middle_assoc_assoc, one_actLeft_assoc, comp_hom', AssociatorBimod.hom_inv_id, regular_X, id'_hom, one_actLeft, left_assoc, Hom.left_act_hom_assoc, RightUnitorBimod.hom_left_act_hom', actRight_one_assoc, middle_assoc, AssociatorBimod.inv_hom_id, id_hom', tensorBimod_X, whiskerRight_hom, Hom.right_act_hom, Hom.right_act_hom_assoc, RightUnitorBimod.hom_inv_id, AssociatorBimod.hom_right_act_hom', LeftUnitorBimod.hom_inv_id, LeftUnitorBimod.hom_left_act_hom'
actLeft 📖CompOp
17 mathmath: TensorBimod.π_tensor_id_actRight, AssociatorBimod.hom_left_act_hom', whiskerLeft_hom, TensorBimod.whiskerLeft_π_actLeft, left_assoc_assoc, Hom.left_act_hom, middle_assoc_assoc, one_actLeft_assoc, one_actLeft, tensorBimod_actLeft, left_assoc, Hom.left_act_hom_assoc, RightUnitorBimod.hom_left_act_hom', middle_assoc, whiskerRight_hom, regular_actLeft, LeftUnitorBimod.hom_left_act_hom'
actRight 📖CompOp
17 mathmath: TensorBimod.π_tensor_id_actRight, RightUnitorBimod.hom_right_act_hom', LeftUnitorBimod.hom_right_act_hom', whiskerLeft_hom, TensorBimod.whiskerLeft_π_actLeft, actRight_one, right_assoc, right_assoc_assoc, middle_assoc_assoc, tensorBimod_actRight, regular_actRight, actRight_one_assoc, middle_assoc, whiskerRight_hom, Hom.right_act_hom, Hom.right_act_hom_assoc, AssociatorBimod.hom_right_act_hom'
associatorBimod 📖CompOp
5 mathmath: whisker_assoc_bimod, comp_whiskerLeft_bimod, triangle_bimod, pentagon_bimod, whiskerRight_comp_bimod
comp 📖CompOp
1 mathmath: comp_hom
forget 📖CompOp
homInhabited 📖CompOp
id' 📖CompOp
1 mathmath: id'_hom
instCategory 📖CompOp
16 mathmath: id_whiskerLeft_bimod, comp_hom', comp_whiskerRight_bimod, whisker_assoc_bimod, comp_whiskerLeft_bimod, whiskerRight_id_bimod, triangle_bimod, id_whiskerRight_bimod, id_hom', whisker_exchange_bimod, pentagon_bimod, whiskerLeft_id_bimod, isoOfIso_hom_hom, isoOfIso_inv_hom, whiskerLeft_comp_bimod, whiskerRight_comp_bimod
instInhabited 📖CompOp
isoOfIso 📖CompOp
2 mathmath: isoOfIso_hom_hom, isoOfIso_inv_hom
leftUnitorBimod 📖CompOp
2 mathmath: id_whiskerLeft_bimod, triangle_bimod
monBicategory 📖CompOp
regular 📖CompOp
14 mathmath: RightUnitorBimod.hom_right_act_hom', RightUnitorBimod.inv_hom_id, LeftUnitorBimod.hom_right_act_hom', id_whiskerLeft_bimod, LeftUnitorBimod.inv_hom_id, regular_X, regular_actRight, whiskerRight_id_bimod, triangle_bimod, RightUnitorBimod.hom_left_act_hom', regular_actLeft, RightUnitorBimod.hom_inv_id, LeftUnitorBimod.hom_inv_id, LeftUnitorBimod.hom_left_act_hom'
rightUnitorBimod 📖CompOp
2 mathmath: whiskerRight_id_bimod, triangle_bimod
tensorBimod 📖CompOp
25 mathmath: AssociatorBimod.hom_left_act_hom', RightUnitorBimod.hom_right_act_hom', LeftUnitorBimod.hom_right_act_hom', whiskerLeft_hom, id_whiskerLeft_bimod, AssociatorBimod.hom_inv_id, comp_whiskerRight_bimod, tensorBimod_actRight, whisker_assoc_bimod, tensorBimod_actLeft, comp_whiskerLeft_bimod, whiskerRight_id_bimod, triangle_bimod, RightUnitorBimod.hom_left_act_hom', id_whiskerRight_bimod, AssociatorBimod.inv_hom_id, tensorBimod_X, whisker_exchange_bimod, whiskerRight_hom, pentagon_bimod, whiskerLeft_id_bimod, whiskerLeft_comp_bimod, AssociatorBimod.hom_right_act_hom', whiskerRight_comp_bimod, LeftUnitorBimod.hom_left_act_hom'
whiskerLeft 📖CompOp
9 mathmath: whiskerLeft_hom, id_whiskerLeft_bimod, whisker_assoc_bimod, comp_whiskerLeft_bimod, triangle_bimod, whisker_exchange_bimod, pentagon_bimod, whiskerLeft_id_bimod, whiskerLeft_comp_bimod
whiskerRight 📖CompOp
9 mathmath: comp_whiskerRight_bimod, whisker_assoc_bimod, whiskerRight_id_bimod, triangle_bimod, id_whiskerRight_bimod, whisker_exchange_bimod, whiskerRight_hom, pentagon_bimod, whiskerRight_comp_bimod

Theorems

NameKindAssumesProvesValidatesDepends On
actRight_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.one
CategoryTheory.Mon.mon
actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
actRight_one_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.one
CategoryTheory.Mon.mon
actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
actRight_one
comp_hom 📖mathematicalHom.hom
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
comp_hom' 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
X
comp_whiskerLeft_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerLeft
tensorBimod
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Iso.hom
associatorBimod
CategoryTheory.Iso.inv
hom_ext
TensorBimod.one_act_left'
TensorBimod.left_assoc'
TensorBimod.actRight_one'
TensorBimod.right_assoc'
TensorBimod.middle_assoc'
AssociatorBimod.hom_inv_id
AssociatorBimod.inv_hom_id
AssociatorBimod.hom_left_act_hom'
AssociatorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
id_tensor_π_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.associator_inv_naturality_right
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whisker_exchange
comp_whiskerRight_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerRight
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
hom_ext
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Limits.parallelPairHom.congr_simp
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap_assoc
hom_ext 📖Hom.homHom.ext
hom_ext_iff 📖mathematicalHom.homhom_ext
id'_hom 📖mathematicalHom.hom
id'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
id_hom' 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.id
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
X
id_whiskerLeft_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerLeft
regular
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
CategoryTheory.Iso.hom
leftUnitorBimod
CategoryTheory.Iso.inv
hom_ext
LeftUnitorBimod.hom_inv_id
LeftUnitorBimod.inv_hom_id
LeftUnitorBimod.hom_left_act_hom'
LeftUnitorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
Hom.left_act_hom
CategoryTheory.MonoidalCategory.leftUnitor_inv_naturality
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.coequalizer.condition
CategoryTheory.MonoidalCategory.associator_inv_naturality_left
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonObj.one_mul
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
id_whiskerRight_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerRight
CategoryTheory.CategoryStruct.id
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
hom_ext
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.MonoidalCategory.id_whiskerRight
CategoryTheory.Limits.parallelPairHom.congr_simp
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
isoOfIso_hom_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
actRight
CategoryTheory.MonoidalCategoryStruct.whiskerRight
Hom.hom
Bimod
instCategory
isoOfIso
isoOfIso_inv_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
actRight
CategoryTheory.MonoidalCategoryStruct.whiskerRight
Hom.hom
CategoryTheory.Iso.inv
Bimod
instCategory
isoOfIso
left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.mul
CategoryTheory.Mon.mon
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
left_assoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.mul
CategoryTheory.Mon.mon
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_assoc
middle_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
actLeft
actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
middle_assoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
actLeft
actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
middle_assoc
one_actLeft 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.one
CategoryTheory.Mon.mon
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
one_actLeft_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.one
CategoryTheory.Mon.mon
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
one_actLeft
pentagon_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
whiskerRight
CategoryTheory.Iso.hom
associatorBimod
whiskerLeft
hom_ext
AssociatorBimod.hom_inv_id
AssociatorBimod.inv_hom_id
AssociatorBimod.hom_left_act_hom'
AssociatorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.MonoidalCategory.comp_whiskerRight
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.MonoidalCategory.associator_naturality_middle
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.associator_naturality_left
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.MonoidalCategory.associator_naturality_right
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
regular_X 📖mathematicalX
regular
CategoryTheory.Mon.X
regular_actLeft 📖mathematicalactLeft
regular
CategoryTheory.MonObj.mul
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
regular_actRight 📖mathematicalactRight
regular
CategoryTheory.MonObj.mul
CategoryTheory.Mon.X
CategoryTheory.Mon.mon
right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.mul
CategoryTheory.Mon.mon
actRight
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
right_assoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.mul
CategoryTheory.Mon.mon
actRight
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_assoc
tensorBimod_X 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
X
tensorBimod
TensorBimod.X
tensorBimod_actLeft 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
actLeft
tensorBimod
TensorBimod.actLeft
tensorBimod_actRight 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
actRight
tensorBimod
TensorBimod.actRight
triangle_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
regular
CategoryTheory.Iso.hom
associatorBimod
whiskerLeft
leftUnitorBimod
whiskerRight
rightUnitorBimod
hom_ext
AssociatorBimod.hom_inv_id
AssociatorBimod.inv_hom_id
AssociatorBimod.hom_left_act_hom'
AssociatorBimod.hom_right_act_hom'
LeftUnitorBimod.hom_inv_id
LeftUnitorBimod.inv_hom_id
LeftUnitorBimod.hom_left_act_hom'
LeftUnitorBimod.hom_right_act_hom'
RightUnitorBimod.hom_inv_id
RightUnitorBimod.inv_hom_id
RightUnitorBimod.hom_left_act_hom'
RightUnitorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Limits.coequalizer.condition
whiskerLeft_comp_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerLeft
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
hom_ext
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.parallelPairHom.congr_simp
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.ι_colimMap_assoc
whiskerLeft_hom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
Hom.hom
tensorBimod
whiskerLeft
CategoryTheory.Limits.colimMap
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
actRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
actLeft
CategoryTheory.Limits.parallelPairHom
whiskerLeft_id_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerLeft
CategoryTheory.CategoryStruct.id
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
hom_ext
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.MonoidalCategory.whiskerLeft_id
CategoryTheory.Limits.parallelPairHom.congr_simp
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
whiskerRight_comp_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerRight
tensorBimod
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Iso.inv
associatorBimod
CategoryTheory.Iso.hom
hom_ext
TensorBimod.one_act_left'
TensorBimod.left_assoc'
TensorBimod.actRight_one'
TensorBimod.right_assoc'
TensorBimod.middle_assoc'
AssociatorBimod.hom_inv_id
AssociatorBimod.inv_hom_id
AssociatorBimod.hom_left_act_hom'
AssociatorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
id_tensor_π_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.comp_whiskerRight
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.associator_naturality_left
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.whisker_exchange
whiskerRight_hom 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
Hom.hom
tensorBimod
whiskerRight
CategoryTheory.Limits.colimMap
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
actRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
actLeft
CategoryTheory.Limits.parallelPairHom
whiskerRight_id_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerRight
regular
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
CategoryTheory.Iso.hom
rightUnitorBimod
CategoryTheory.Iso.inv
hom_ext
RightUnitorBimod.hom_inv_id
RightUnitorBimod.inv_hom_id
RightUnitorBimod.hom_left_act_hom'
RightUnitorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
Hom.right_act_hom
CategoryTheory.MonoidalCategory.rightUnitor_inv_naturality
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.Limits.coequalizer.condition
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonObj.mul_one
CategoryTheory.MonoidalCategory.whiskerLeft_rightUnitor
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Iso.inv_hom_id_assoc
whisker_assoc_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
whiskerRight
tensorBimod
whiskerLeft
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Iso.hom
associatorBimod
CategoryTheory.Iso.inv
hom_ext
TensorBimod.one_act_left'
TensorBimod.left_assoc'
TensorBimod.actRight_one'
TensorBimod.right_assoc'
TensorBimod.middle_assoc'
AssociatorBimod.hom_inv_id
AssociatorBimod.inv_hom_id
AssociatorBimod.hom_left_act_hom'
AssociatorBimod.hom_right_act_hom'
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.MonoidalCategory.comp_whiskerRight
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
id_tensor_π_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.whisker_assoc
whisker_exchange_bimod 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
Bimod
CategoryTheory.Category.toCategoryStruct
instCategory
tensorBimod
whiskerLeft
whiskerRight
hom_ext
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.parallelPairHom_app_one
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.MonoidalCategory.tensor_whiskerLeft
CategoryTheory.Limits.parallelPairHom.congr_simp
CategoryTheory.Limits.ι_colimMap_assoc

Bimod.AssociatorBimod

Definitions

NameCategoryTheorems
hom 📖CompOp
4 mathmath: hom_left_act_hom', hom_inv_id, inv_hom_id, hom_right_act_hom'
homAux 📖CompOp
inv 📖CompOp
2 mathmath: hom_inv_id, inv_hom_id
invAux 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_inv_id 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Bimod.X
Bimod.tensorBimod
hom
inv
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
π_tensor_id_preserves_coequalizer_inv_desc
id_tensor_π_preserves_coequalizer_inv_desc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Category.comp_id
hom_left_act_hom' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
Bimod.X
Bimod.tensorBimod
Bimod.actLeft
hom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
Bimod.TensorBimod.whiskerLeft_π_actLeft
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.MonoidalCategory.associator_inv_naturality_middle
CategoryTheory.MonoidalCategory.comp_whiskerRight
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.associator_naturality_left
CategoryTheory.MonoidalCategory.associator_inv_naturality_right
CategoryTheory.MonoidalCategory.whisker_exchange
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerRight_comp
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
hom_right_act_hom' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Bimod.X
Bimod.tensorBimod
CategoryTheory.Mon.X
Bimod.actRight
hom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
Bimod.TensorBimod.π_tensor_id_actRight
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.MonoidalCategory.associator_naturality_left
CategoryTheory.MonoidalCategory.whisker_exchange
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.associator_naturality_middle
CategoryTheory.MonoidalCategory.whiskerLeft_comp
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
Mathlib.Tactic.Monoidal.naturality_whiskerRight
inv_hom_id 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Bimod.X
Bimod.tensorBimod
inv
hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
id_tensor_π_preserves_coequalizer_inv_desc
π_tensor_id_preserves_coequalizer_inv_desc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Category.comp_id

Bimod.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
14 mathmath: Bimod.whiskerLeft_hom, left_act_hom, Bimod.comp_hom, Bimod.hom_ext_iff, Bimod.comp_hom', Bimod.id'_hom, left_act_hom_assoc, Bimod.id_hom', Bimod.whiskerRight_hom, right_act_hom, Bimod.isoOfIso_hom_hom, Bimod.isoOfIso_inv_hom, right_act_hom_assoc, ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖hom
ext_iff 📖mathematicalhomext
left_act_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
Bimod.X
Bimod.actLeft
hom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
left_act_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
Bimod.X
Bimod.actLeft
hom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
left_act_hom
right_act_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Bimod.X
CategoryTheory.Mon.X
Bimod.actRight
hom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
right_act_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Bimod.X
CategoryTheory.Mon.X
Bimod.actRight
hom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
right_act_hom

Bimod.LeftUnitorBimod

Definitions

NameCategoryTheorems
hom 📖CompOp
4 mathmath: hom_right_act_hom', inv_hom_id, hom_inv_id, hom_left_act_hom'
inv 📖CompOp
2 mathmath: inv_hom_id, hom_inv_id

Theorems

NameKindAssumesProvesValidatesDepends On
hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Bimod.TensorBimod.X
Bimod.regular
Bimod.X
hom
inv
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.MonoidalCategory.leftUnitor_inv_naturality
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.coequalizer.condition
CategoryTheory.MonoidalCategory.associator_inv_naturality_left
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonObj.one_mul
CategoryTheory.Category.comp_id
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_id
hom_left_act_hom' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
Bimod.X
Bimod.tensorBimod
Bimod.regular
Bimod.actLeft
hom
Bimod.TensorBimod.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
id_tensor_π_preserves_coequalizer_inv_colimMap_desc
Bimod.left_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.Iso.inv_hom_id_assoc
hom_right_act_hom' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Bimod.X
Bimod.tensorBimod
Bimod.regular
CategoryTheory.Mon.X
Bimod.actRight
hom
Bimod.TensorBimod.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
π_tensor_id_preserves_coequalizer_inv_colimMap_desc
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Limits.coequalizer.π_desc
Bimod.middle_assoc
inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Bimod.X
Bimod.TensorBimod.X
Bimod.regular
inv
hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
Bimod.one_actLeft
CategoryTheory.Iso.inv_hom_id

Bimod.RightUnitorBimod

Definitions

NameCategoryTheorems
hom 📖CompOp
4 mathmath: hom_right_act_hom', inv_hom_id, hom_left_act_hom', hom_inv_id
inv 📖CompOp
2 mathmath: inv_hom_id, hom_inv_id

Theorems

NameKindAssumesProvesValidatesDepends On
hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Bimod.TensorBimod.X
Bimod.regular
Bimod.X
hom
inv
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.MonoidalCategory.rightUnitor_inv_naturality
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.Limits.coequalizer.condition
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonObj.mul_one
CategoryTheory.Category.comp_id
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_rightUnitor
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
hom_left_act_hom' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
Bimod.X
Bimod.tensorBimod
Bimod.regular
Bimod.actLeft
hom
Bimod.TensorBimod.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
id_tensor_π_preserves_coequalizer_inv_colimMap_desc
Bimod.middle_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.Iso.inv_hom_id_assoc
hom_right_act_hom' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Bimod.X
Bimod.tensorBimod
Bimod.regular
CategoryTheory.Mon.X
Bimod.actRight
hom
Bimod.TensorBimod.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
π_tensor_id_preserves_coequalizer_inv_colimMap_desc
Bimod.right_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.Limits.coequalizer.π_desc
CategoryTheory.Iso.hom_inv_id_assoc
inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Bimod.X
Bimod.TensorBimod.X
Bimod.regular
inv
hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.assoc
CategoryTheory.Limits.coequalizer.π_desc
Bimod.actRight_one
CategoryTheory.Iso.inv_hom_id

Bimod.TensorBimod

Definitions

NameCategoryTheorems
X 📖CompOp
16 mathmath: π_tensor_id_actRight, Bimod.RightUnitorBimod.hom_right_act_hom', Bimod.RightUnitorBimod.inv_hom_id, Bimod.LeftUnitorBimod.hom_right_act_hom', right_assoc', whiskerLeft_π_actLeft, actRight_one', middle_assoc', Bimod.LeftUnitorBimod.inv_hom_id, left_assoc', Bimod.RightUnitorBimod.hom_left_act_hom', Bimod.tensorBimod_X, one_act_left', Bimod.RightUnitorBimod.hom_inv_id, Bimod.LeftUnitorBimod.hom_inv_id, Bimod.LeftUnitorBimod.hom_left_act_hom'
actLeft 📖CompOp
5 mathmath: whiskerLeft_π_actLeft, middle_assoc', left_assoc', Bimod.tensorBimod_actLeft, one_act_left'
actRight 📖CompOp
5 mathmath: π_tensor_id_actRight, right_assoc', actRight_one', middle_assoc', Bimod.tensorBimod_actRight

Theorems

NameKindAssumesProvesValidatesDepends On
actRight_one' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.one
CategoryTheory.Mon.mon
actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whisker_exchange
π_tensor_id_actRight
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.whiskerLeft_comp
Bimod.actRight_one
CategoryTheory.MonoidalCategory.whiskerLeft_rightUnitor
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
left_assoc' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.mul
CategoryTheory.Mon.mon
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whisker_exchange
whiskerLeft_π_actLeft
CategoryTheory.MonoidalCategory.associator_inv_naturality_left
CategoryTheory.MonoidalCategory.comp_whiskerRight
Bimod.left_assoc
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.associator_inv_naturality_middle
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.eval_whiskerLeft
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalWhiskerLeft_of_cons
Mathlib.Tactic.Monoidal.evalWhiskerLeft_nil
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker
Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_of_of
Mathlib.Tactic.Monoidal.evalWhiskerRightAux_of
Mathlib.Tactic.Monoidal.evalComp_cons
Mathlib.Tactic.Monoidal.evalComp_nil_nil
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_whiskerLeft
Mathlib.Tactic.Monoidal.naturality_id
middle_assoc' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
actLeft
actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight
whiskerLeft_π_actLeft
π_tensor_id_actRight
CategoryTheory.MonoidalCategory.associator_naturality_left
CategoryTheory.MonoidalCategory.associator_naturality_middle
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.associator_inv_naturality_right
CategoryTheory.MonoidalCategory.whisker_exchange
CategoryTheory.MonoidalCategory.whiskerRight_tensor
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MonoidalCategory.pentagon_hom_inv_inv_inv_inv_assoc
one_act_left' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonObj.one
CategoryTheory.Mon.mon
actLeft
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whisker_exchange
whiskerLeft_π_actLeft
CategoryTheory.MonoidalCategory.associator_inv_naturality_left
CategoryTheory.MonoidalCategory.comp_whiskerRight
Bimod.one_actLeft
CategoryTheory.MonoidalCategory.leftUnitor_naturality
Mathlib.Tactic.BicategoryLike.mk_eq
Mathlib.Tactic.Monoidal.eval_comp
Mathlib.Tactic.Monoidal.eval_whiskerRight
Mathlib.Tactic.Monoidal.evalWhiskerRight_nil
Mathlib.Tactic.Monoidal.eval_of
Mathlib.Tactic.Monoidal.evalComp_nil_cons
Mathlib.Tactic.BicategoryLike.mk_eq_of_cons
Mathlib.Tactic.Monoidal.mk_eq_of_naturality
Mathlib.Tactic.Monoidal.naturality_comp
Mathlib.Tactic.Monoidal.naturality_inv
Mathlib.Tactic.Monoidal.naturality_associator
Mathlib.Tactic.Monoidal.naturality_whiskerRight
Mathlib.Tactic.Monoidal.naturality_leftUnitor
Mathlib.Tactic.Monoidal.naturality_id
right_assoc' 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
X
CategoryTheory.Mon.X
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.MonObj.mul
CategoryTheory.Mon.mon
actRight
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.cancel_epi
CategoryTheory.Limits.map_π_epi
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whisker_exchange
π_tensor_id_actRight
CategoryTheory.MonoidalCategory.associator_naturality_right
CategoryTheory.MonoidalCategory.whiskerLeft_comp
Bimod.right_assoc
CategoryTheory.MonoidalCategory.associator_inv_naturality_left
CategoryTheory.MonoidalCategory.comp_whiskerRight
CategoryTheory.MonoidalCategory.whisker_assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.MonoidalCategory.pentagon_inv_hom_hom_hom_inv_assoc
whiskerLeft_π_actLeft 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Mon.X
Bimod.X
CategoryTheory.Limits.coequalizer
CategoryTheory.MonoidalCategoryStruct.whiskerRight
Bimod.actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
Bimod.actLeft
X
CategoryTheory.Limits.coequalizer.π
actLeft
CategoryTheory.Iso.inv
CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap
CategoryTheory.Category.assoc
π_tensor_id_actRight 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Bimod.X
CategoryTheory.Mon.X
CategoryTheory.Limits.coequalizer
CategoryTheory.MonoidalCategoryStruct.whiskerRight
Bimod.actRight
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
Bimod.actLeft
X
CategoryTheory.Limits.coequalizer.π
actRight
CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap
CategoryTheory.Category.assoc

(root)

Definitions

NameCategoryTheorems
Bimod 📖CompData
16 mathmath: Bimod.id_whiskerLeft_bimod, Bimod.comp_hom', Bimod.comp_whiskerRight_bimod, Bimod.whisker_assoc_bimod, Bimod.comp_whiskerLeft_bimod, Bimod.whiskerRight_id_bimod, Bimod.triangle_bimod, Bimod.id_whiskerRight_bimod, Bimod.id_hom', Bimod.whisker_exchange_bimod, Bimod.pentagon_bimod, Bimod.whiskerLeft_id_bimod, Bimod.isoOfIso_hom_hom, Bimod.isoOfIso_inv_hom, Bimod.whiskerLeft_comp_bimod, Bimod.whiskerRight_comp_bimod

Theorems

NameKindAssumesProvesValidatesDepends On
id_tensor_π_preserves_coequalizer_inv_colimMap_desc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Limits.coequalizer
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.coequalizer.π
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Limits.PreservesCoequalizer.iso
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimMap
CategoryTheory.Limits.parallelPairHom
CategoryTheory.Limits.coequalizer.desc
CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap_desc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
id_tensor_π_preserves_coequalizer_inv_desc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Limits.coequalizer
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.coequalizer.π
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Limits.PreservesCoequalizer.iso
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Limits.coequalizer.desc
CategoryTheory.Limits.map_π_preserves_coequalizer_inv_desc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
π_tensor_id_preserves_coequalizer_inv_colimMap_desc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Limits.coequalizer
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.coequalizer.π
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Limits.PreservesCoequalizer.iso
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimMap
CategoryTheory.Limits.parallelPairHom
CategoryTheory.Limits.coequalizer.desc
CategoryTheory.Limits.map_π_preserves_coequalizer_inv_colimMap_desc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
π_tensor_id_preserves_coequalizer_inv_desc 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfSize
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Limits.coequalizer
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.coequalizer.π
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Limits.PreservesCoequalizer.iso
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape
CategoryTheory.Limits.coequalizer.desc
CategoryTheory.Limits.map_π_preserves_coequalizer_inv_desc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesColimitsOfSize.preservesColimitsOfShape

---

← Back to Index