Documentation

Mathlib.CategoryTheory.Monoidal.Bimod

The category of bimodule objects over a pair of monoid objects. #

theorem id_tensor_π_preserves_coequalizer_inv_colimMap_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorLeft X)] {X Y Z X' Y' Z' : C} (f g : X Y) (f' g' : X' Y') (p : CategoryTheory.MonoidalCategoryStruct.tensorObj Z X X') (q : CategoryTheory.MonoidalCategoryStruct.tensorObj Z Y Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z f) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z g) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h) :
theorem π_tensor_id_preserves_coequalizer_inv_colimMap_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorRight X)] {X Y Z X' Y' Z' : C} (f g : X Y) (f' g' : X' Y') (p : CategoryTheory.MonoidalCategoryStruct.tensorObj X Z X') (q : CategoryTheory.MonoidalCategoryStruct.tensorObj Y Z Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight f Z) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight g Z) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h) :

A bimodule object for a pair of monoid objects, all internal to some monoidal category.

Instances For
    theorem Bimod.Hom.ext_iff {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {A B : CategoryTheory.Mon C} {M N : Bimod A B} {x y : M.Hom N} :
    x = y x.hom = y.hom
    theorem Bimod.Hom.ext {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {A B : CategoryTheory.Mon C} {M N : Bimod A B} {x y : M.Hom N} (hom : x.hom = y.hom) :
    x = y

    The identity morphism on a bimodule object.

    Equations
      Instances For
        def Bimod.comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : CategoryTheory.Mon C} {M N O : Bimod A B} (f : M.Hom N) (g : N.Hom O) :
        M.Hom O

        Composition of bimodule object morphisms.

        Equations
          Instances For
            theorem Bimod.hom_ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : CategoryTheory.Mon C} {M N : Bimod A B} (f g : M N) (h : f.hom = g.hom) :
            f = g

            Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.

            Equations
              Instances For

                A monoid object as a bimodule over itself.

                Equations
                  Instances For

                    The forgetful functor from bimodule objects to the ambient category.

                    Equations
                      Instances For

                        The underlying object of the tensor product of two bimodules.

                        Equations
                          Instances For

                            The underlying morphism of the forward component of the left unitor isomorphism.

                            Equations
                              Instances For

                                The underlying morphism of the inverse component of the left unitor isomorphism.

                                Equations
                                  Instances For

                                    The underlying morphism of the forward component of the right unitor isomorphism.

                                    Equations
                                      Instances For

                                        The underlying morphism of the inverse component of the right unitor isomorphism.

                                        Equations
                                          Instances For