Documentation Verification Report

CommGrp_

📁 Source: Mathlib/CategoryTheory/Monoidal/Cartesian/CommGrp_.lean

Statistics

MetricCount
DefinitionsCommGrpObj, ofRepresentableBy, toGrpObj, CommGrp_Class, ofRepresentableBy, yonedaCommGrpGrp, yonedaCommGrpGrpObj
7
TheoremstoIsCommMonObj, yonedaCommGrpGrpObj_map, yonedaCommGrpGrpObj_obj_coe, yonedaCommGrpGrp_map_app, yonedaCommGrpGrp_obj
5
Total12

CategoryTheory

Definitions

NameCategoryTheorems
CommGrpObj 📖CompData
CommGrp_Class 📖CompOp
yonedaCommGrpGrp 📖CompOp
2 mathmath: yonedaCommGrpGrp_obj, yonedaCommGrpGrp_map_app
yonedaCommGrpGrpObj 📖CompOp
4 mathmath: yonedaCommGrpGrpObj_map, yonedaCommGrpGrp_obj, yonedaCommGrpGrpObj_obj_coe, yonedaCommGrpGrp_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
yonedaCommGrpGrpObj_map 📖mathematicalFunctor.map
Opposite
Grp
Category.opposite
Grp.instCategory
CommGrpCat
CommGrpCat.instCategory
yonedaCommGrpGrpObj
CommGrpCat.ofHom
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
CommGrp.toGrp
Hom.commGroup
Grp.instCartesianMonoidalCategory
Grp.instGrpObj
CommGrp.comm
Grp.instBraidedCategory
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toOne
CategoryStruct.comp
Quiver.Hom.unop
CommGrp.comm
yonedaCommGrpGrpObj_obj_coe 📖mathematicalCommGrpCat.carrier
Functor.obj
Opposite
Grp
Category.opposite
Grp.instCategory
CommGrpCat
CommGrpCat.instCategory
yonedaCommGrpGrpObj
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
CommGrp.toGrp
yonedaCommGrpGrp_map_app 📖mathematicalNatTrans.app
Opposite
Grp
Category.opposite
Grp.instCategory
CommGrpCat
CommGrpCat.instCategory
yonedaCommGrpGrpObj
Functor.map
CommGrp
CommGrp.instCategory
Functor
Functor.category
yonedaCommGrpGrp
CommGrpCat.ofHom
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
CommGrp.toGrp
Hom.commGroup
Grp.instCartesianMonoidalCategory
Grp.instGrpObj
CommGrp.comm
Grp.instBraidedCategory
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toOne
CategoryStruct.comp
InducedCategory.Hom.hom
CommGrp.comm
yonedaCommGrpGrp_obj 📖mathematicalFunctor.obj
CommGrp
CommGrp.instCategory
Functor
Opposite
Grp
Category.opposite
Grp.instCategory
CommGrpCat
CommGrpCat.instCategory
Functor.category
yonedaCommGrpGrp
yonedaCommGrpGrpObj

CategoryTheory.CommGrpObj

Definitions

NameCategoryTheorems
ofRepresentableBy 📖CompOp
toGrpObj 📖CompOp
1 mathmath: toIsCommMonObj

Theorems

NameKindAssumesProvesValidatesDepends On
toIsCommMonObj 📖mathematicalCategoryTheory.IsCommMonObj
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.GrpObj.toMonObj
toGrpObj

CategoryTheory.CommGrp_Class

Definitions

NameCategoryTheorems
ofRepresentableBy 📖CompOp

---

← Back to Index